Skip to main content
Log in

Investigation of fast neutron shielding characteristics depending on boron percentages of MgB2, NaBH4 and KBH4

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The macroscopic cross-section Σ and average neutron fluence in matter Φ are usable factors to comment neutron shielding property of samples. In this paper, we have used MgB2, NaBH4 and KBH4 samples including different percentages of boron. Neutron macroscopic cross-section measurements of them have been done by using a source of mono-energetic neutrons (E eff = 4.5 MeV 241Am–Be). Average neutron fluence values and double differential fast neutron flux distributions of each samples calculated by using FLUKA Monte Carlo code. Also half value layers (HVLs) of samples are compared to paraffin which is one of the most neutron moderators. As a result, growing boron concentration can raise neutron shielding property of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baştürk M, Arztmann J, Jerlich W, Kardjilov N, Lehmann E, Zawisky M (2005) Analysis of neutron attenuation in boron-alloyed stainless steel with neutron radiography and JEN-3 gauge. J Nucl Mater 341:189–200

    Article  Google Scholar 

  2. Tschirf E (1976) Concrete as a shielding material against X-rays, gamma and neutron. Zement-und-Beton 21(5):240–244

    Google Scholar 

  3. Bashter II, Makarious AS, Abdo AE (1996) Investigation of hematite-serpentine and ilmenite-limonite concretes for reactor radiation shielding. Ann Nucl Energy 23(1):65–71

    Article  CAS  Google Scholar 

  4. Abdo AE (2002) Calculation of the cross sections for fast neutrons and gamma rays in concrete shields. Ann Nucl Energy 29:1977–1988

    Article  Google Scholar 

  5. Içelli O, Erzeneoğlu S, Boncukçuoğlu R (2003) Measurement of X-ray transmission factors of some boron compounds. Radiat Meas 37:613–616

    Article  Google Scholar 

  6. Maiti M, Nandy M, Roy SN, Sarkar PK (2004) Flux and dose transmission through concrete of neutrons from proton induced reactions on various target elements. Nucl Instrum Methods Phys Res Sect B 226(4):585–594

    CAS  Google Scholar 

  7. Yousif Ali M, El-Megrab AM, Jonah SA, Daw May Su, Varadi M, Csikai J (1995) Investigations of neutron fields used in elemental analysis of bulk samples. Nucl Geophys 9(3):203–217

    Google Scholar 

  8. Csikai J, Elagib I, Buczko CsM (1999) Studies on the neutron reflection, scattering and transmission methods used for bulk hydrogen analysis. Progress Report on IAEA CRP on Bulk Hydrogen Analysis using Neutrons

  9. Mollah AS, Ahmad GU, Husain SR (1992) Measurements of neutron shielding properties of heavy concretes using a Cf-252 source. Nucl Eng Des 135(3):321–325

    Article  CAS  Google Scholar 

  10. Yarar Y, Bayülken A (1994) Investigation of neutron shielding efficiency and radioactivity of concrete shields containing colemanite. J Nucl Mater 212–215:1720–1723

    Article  Google Scholar 

  11. Okuno K (2005) Neutron shielding material based on colemanite and epoxy resin. Radiat Prot Dosim 115(1–4):258–261

    Article  CAS  Google Scholar 

  12. Guetersloh S, Zeitlin C, Heilbronn L, Miller J, Komiyama T, Fukumura A, Iwata Y, Murakami T, Bhattacharya M (2006) Polyethylene as a radiation shielding standard in simulated cosmic-ray environments. Nucl Instrum Methods Phys Res B 252(2):319–332

    Article  CAS  Google Scholar 

  13. Kase KR, Nelson WR, Fasso A, Liu JC, Mao X, Jenkins TM, Kleck JH (2003) Measurements of accelerator-produced leakage neutron and photon transmission through concrete. Health Phys 84(2):180–187

    Article  CAS  Google Scholar 

  14. Osborn JC, Ersez T, Braoudakis G (2006) Radiation shielding design for neutron diffractometers assisted by Monte Carlo methods. Phys B 385–386(2):1321–1323

    Article  Google Scholar 

  15. Adib M, Habib N, Fathaalla M (2007) Neutron transmission through pyrolytic graphite crystals. Ann Nucl Energy 33(7):627–632

    Article  Google Scholar 

  16. Hayashi T, Tobita K, Nakamori Y, Orimo S (2009) Advanced neutron shielding material using zirconium borohydride and zirconium hydride. J Nucl Mater 386–388:121–199

    Google Scholar 

  17. Fuga P (1990) Removal cross sections for 14.6 MeV neutrons. J Radioanal Nucl Chem 149(2):287–290

    Google Scholar 

  18. Ferrari A, Sala PR, Fasso A, Ranft J (2005) FLUKA: a multi-particle transport code. CERN-2005-10 INFN/TC 05/11, SLAC-R-773

  19. Mark S, Khomchenkoa S, Shifrin M, Haviv Y, Schwartz JR, Orion I (2007) TVF-NMCRC—a powerful program for writing and executing simulation inputs for the FLUKA Monte Carlo Code system. Nucl Instrum Methods Phys Res A 572:929–934

    Article  CAS  Google Scholar 

  20. Desdin L, Ceballos C (2000) Neutron reflection method for the fast estimation of neutron removal cross section in hydrogenous materials. J Radioanal Nucl Chem 243(3):835–837

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Korkut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkut, T., Karabulut, A., Budak, G. et al. Investigation of fast neutron shielding characteristics depending on boron percentages of MgB2, NaBH4 and KBH4 . J Radioanal Nucl Chem 286, 61–65 (2010). https://doi.org/10.1007/s10967-010-0619-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0619-0

Keywords

Navigation