Skip to main content
Log in

Decomposition of pesticide chlorfenvinphos in aqueous solutions by gamma-irradiation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effectiveness of radiolytic decomposition of widely used organophosphorus pesticide chlorfenvinphos using γ-irradiation from 60Co source was investigated using HPLC and ion-chromatography for monitoring of decomposition products. In terms of irradiation dose the Microtox toxicity of irradiated solutions was examined, and also effect of irradiation on ability of irradiated chlorfenvinphos solutions to inhibit activity of enzyme acetylcholi-nesterase was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hallab AH (1968) Detoxification of pesticidal residues in fish and shell-fish. Diss Abstr 29:649

    Google Scholar 

  2. Peller J, Wiest O, Kamat PV (2004) Hydroxyl radical’s role in the remediation of a common herbicide 2,4-dichloorophenoxyacetic acid (2,4-D). J Phys Chem A 108:10925–10933

    Article  CAS  Google Scholar 

  3. Peller J, Kamat PV (2005) Radiolytic transformations of chlorinated phenols and chlorinated phenoxyacertic acids. J Phys Chem A 109:9528–9535

    Article  CAS  Google Scholar 

  4. Zona R, Solar S, Gehringer P (2002) Degradation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: influence of oxygen. Wat Res 36:1369–1375

    Article  CAS  Google Scholar 

  5. Zona R, Solar S (2003) Oxidation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: degradation, detoxification and mineralization. Radiat Phys chem 66:137–143

    Article  CAS  Google Scholar 

  6. Liu SY, Chen YP, Yu HQ, Zhang SJ (2005) Kinetics and mechanisms of radiation-induced degradation of acetochlor. Chemosphere 59:13–19

    Article  CAS  Google Scholar 

  7. Abel Aal SE, Dessouki AM, Sokker HH (2001) Degradation of some pesticides in aqueos solutions by electron beam and gamma-radiation. J Radioanal Nucl Chem 250:329–334

    Article  Google Scholar 

  8. Drzewicz P, Trojanowicz M, Zona R, Solar S, Geringer P (2004) Decomposition of 2,4-dichlorophenoxyacetic acid by ozonation, ionizing radiation as well as ozonation combined with ionizing radiation. Radiat Phys chem 69:281–287

    Article  CAS  Google Scholar 

  9. Drzewicz P, Gehringer P, Bojanowska-Czajka A, Zona R, Solar S, Nałęcz-Jawecki G, Sawicki J, Trojanowicz M (2005) Radiolytic degradation of herbicide dicamba for environmental protection. Arch Environ Cont Toxicol 4:311–322

    Article  CAS  Google Scholar 

  10. Bojanowska-Czajka A, Drzewicz P, Kozyra C, Nałęcz-Jawecki G, Sawicki J, Szostek B, Trojanowicz M (2006) Radiolytic degradation of herbicide (4-chloro-2-metylphenoxy) acetic acid (MCPA) by γ radiation for environmental purposes. Ecotox Env Safety 65:265–277

    Article  CAS  Google Scholar 

  11. Bojanowska-Czajka A, Drzewicz P, Zimek Z, Nichipor H, Nałęcz-Jawecki G, Sawicki J, Kozyra C, Trojanowicz M (2007) Radiolytic degradation of pesticides 4-chloro-2-methylphenoxyacetic acid (MCPA)—experimental data and kinetic modeling. Radiat Phys chem 76:1806–1814

    Article  CAS  Google Scholar 

  12. Galloway TR, Handy R (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12:345–363

    Article  CAS  Google Scholar 

  13. Grant DL, Sherwood CR, KAm McCully (1969) Degradation and anticarboxylesterases activity of disulfoton and phorate after 60Co gamma irradiation. J Assoc Off Anal Chem 52:805–811

    CAS  Google Scholar 

  14. Lippold PC, Cleere JS, LMJr Massay, Bourke JB, Avens AW (1969) Degradation of insecticides by Cobalt-60 gamma radiation. J Econ Entomol 62:1509–1510

    CAS  Google Scholar 

  15. Cappadona C, Guarino P, Calderaro E, Petruso S, Ardica S (1975) Possible use of high-level radiation for the degradation of some substances present in urban and industrial waters. Radiat Clean Environ Proc Int Symp 265–284

  16. Cogburn RR, Mahany PG (1969) Effect of gamma irradiation on the insecticidal efficiency of malathion deposits on wheat and kraft paper. J Econ Entomol 62:829–831

    CAS  Google Scholar 

  17. Aguila A, O’Shea KE, Tobien T, Asmus KD (2001) Reactions of hydroxyl radical with dimethylphosphonate and diethyl methylphosphonate. A fundamental mechanistic study. J Phys Chem A 105:7834–7839

    Article  CAS  Google Scholar 

  18. Basfar AA, Mohammed KA, Al-Abduly AJ, Al-Kuraiji TS, Al-Shahrani AA (2007) Degradation of diazinon contaminated waters by ionizing radiation. Radiat Phys chem 76:1474–1479

    Article  CAS  Google Scholar 

  19. Benon KI, Davies L, Elgar K (1966) Analysis of propos and soils for residues of diethyl 1-(2,4-dichlorophenyl)-2-chlorovinyl phosphate. I. Development of method. J Sci Food Agric 17:162–167

    Article  Google Scholar 

  20. Wiliams JH (1975) Persistence of chlorfenvinphos in soils. Pestic Sci 6:501–509

    Article  Google Scholar 

  21. Tomlin C (1994) A world compendium. The pesticide manual. Incorporating the agrochemicals handbook, CDS Tomlin. British Crop protection Council, Bungay, Suffolk

    Google Scholar 

  22. Fontana E, Pianezzola E, Basileo G, Strolin M, Benedetti L (1993) High-performance liquid chromatogarphic determination of FCE 24928, a new aromatase inhibitor, in human plasma. J Chromatogr A 655:293–298

    Article  Google Scholar 

  23. Leoni V, Caricchia AM, Chiavarini S (1992) Multiresidue method for quantitation of organophosphorus pesticides in vegetable and animal foods. J Assoc Off Anal Chem Int 75:511–518

    CAS  Google Scholar 

  24. Gałęzowska A, Sikora T, Istamboulie G, Trojanowicz M, Połeć I, Nunes GS, Noguer T, Marty JL (2008) Application of genetically engineered acetylcholinesterases in screen-printed amperometric biosensor for detection of organophosphorus insecticides. Sens Mat 6:299–308

    Google Scholar 

  25. Atkintonova DA (1984) Theoretical aspects of enzyme induction and inhibition leading to the reversal of resistance to biocides. J Theor Biol 106:79–87

    Article  Google Scholar 

  26. Istamboulie G, Durbiano R, Fournier D, Mary JL, Noguer T (2010) Biposensor-controlled degradation of chlorpyrifos and chlorfenvinfos using a phosphotriesterase-based detoxification column. Chemosphere 78:1–6

    Article  CAS  Google Scholar 

  27. Kaiser KLE, Palabrica V (1991) Photobacterium phosphoreum toxicity data index water. Water Poll Res J Can 3:361–395

    Google Scholar 

Download references

Acknowledgment

Authors thank Prof. D. Fournier of University of Touluse, France for gift of AChE, and dr M. Biesaga of University of Warsaw, Department of Chemistry for help in LC/MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trojanowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojanowska-Czajka, A., Gałęzowska, A., Marty, JL. et al. Decomposition of pesticide chlorfenvinphos in aqueous solutions by gamma-irradiation. J Radioanal Nucl Chem 285, 215–221 (2010). https://doi.org/10.1007/s10967-010-0567-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0567-8

Keywords

Navigation