Skip to main content
Log in

Adsorption of some toxic elements from water samples on modified activated carbon, activated carbon and red soil using neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A simple and sensitive method for the determination of some metalloids and heavy metals in water samples is presented. The method is based on the preconcentration of the attachment of chelating functionalities with metalloids and toxic metals irreversibly and targeted towards toxic metals adsorbed on modified activated carbon, activated carbon and red soil particles at pH 3.0–9.0±0.2, followed by quantitative determination using instrumental neutron activation analysis (INAA), on the absorbers. Attachment results from attraction that may be physical, chemical, electrical, or a combination of all three. The efficient removal of metalloids and toxic metals, especially arsenic, chromium and mercury is anticipated. The adsorption capacity of the chemically modified activated carbon materials was evaluated for the above mentioned metalloid and toxic metal ions in the presence of iron ions and simulated water samples. Red soil particles containing iron was utilized in the control of oxidation-reduction reaction with metalloids and toxic metals. The preconcentration of the elements of interest on red soil particles, activated carbon and modified activated carbon at different depths, pH and oxidation states was investigated. The results obtained showed good agreement with certified values giving relative errors of less than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Benoit, K. S. Hunter, T. F. Rozan, Anal. Chem., 69 (1997) 1006.

    Article  CAS  Google Scholar 

  2. C. D. Hunt, Metals in Surface Waters, H. E. Allen, W. A. Garrison, G. W. Luther III (Eds), Ann Arbor Press, Chelsea, MI, 1997, p. 107.

    Google Scholar 

  3. B. T. Hart, T. Hines, Trace Elements in Natural Waters, B. Salbu, E. Steinnes (Eds), CRC Press, Boca Raton, FL, 1995, p. 203.

    Google Scholar 

  4. Taylor, E. Howard Siller, M. Alan, Environ. Sci. Technol., 29 (1995) 1313.

    Article  CAS  Google Scholar 

  5. L. H. Windom, T. J. Byrd, G. R. Smith Jr., Feng Huan, Environ. Sci. Technol., 25 (1991) 1137.

    Article  CAS  Google Scholar 

  6. P. G. C. Campbell, Metal Speciation and Bioavaiability in Aquatic Systems, A. Tessier, D. R. Turner (Eds), John Wiley & Sons, New York, 1995, p. 45.

    Google Scholar 

  7. P. G. C. Campbell, Metal Speciation and Bioavailability in Aquatic Systems, A. Tessier, D. R. Turner (Eds), John Wiley & Sons, New York, 1995, p. 103.

    Google Scholar 

  8. H. E. Allen, L. Herbert, J. D. Hansen, Water Environ. Res., 68 (1996) 42.

    Article  CAS  Google Scholar 

  9. P. Burba, Fresenius J. Anal. Chem., 348 (1994) 301.

    Article  CAS  Google Scholar 

  10. P. Burba, J. Rocha, D. Klockow, J. Anal. Chem., 349 (1994) 800.

    Article  CAS  Google Scholar 

  11. S. E. Cabaniss, M. S. Shuman, Geochim. Cosmochim. Acta, 52 (1988) 185.

    Article  CAS  Google Scholar 

  12. E. M. Perdue, Metals in Surface Waters, H. E. Allen, W. A. Garrison, G. W. Luther III (Eds), Ann Arbor, Chelsea, MI, 1997, p. 169.

    Google Scholar 

  13. W. J. Weber, Physicochemical Process for Water Quality, Willey, Interscience, New York, 1972, Chapter 5.

    Google Scholar 

  14. P. D. Rama, G. R. K. Naidu, Analyst, 115 (1990) 1469.

    Article  Google Scholar 

  15. V. R. Deitz, J. N. Robinson, Carbon, 13 (1975) 181.

    Article  CAS  Google Scholar 

  16. M. M. Ross, R. J. Colton, V. R. Deitz, Carbon, 27 (1989) 492.

    Article  CAS  Google Scholar 

  17. K. H. Tan, Principal of Soil Chemistry, 2nd ed., Marcel Dekker, Inc., New York, 1992.

    Google Scholar 

  18. I. Pizarro, M. Gomez, C. Camara, M. A. Palacios, Anal. Chim. Acta, 495 (2003) 85.

    Article  CAS  Google Scholar 

  19. H. Bem, M. Gallorini, E. Rizzo, M. Krzeminska, Environ. Intern., 29 (2003) 423.

    Article  CAS  Google Scholar 

  20. A. M. Yusof, M. M. Rahman, A. K. H. Wood, S. Hamzah, A. Shamsiah, Development and water quality parameters assessment of a filter unit using local raw materials for use in safe drinking water, in: 15th Malaysian Analytical Chemistry Symp., Penang, Malaysia, 2002.

  21. H. A. V. Sloot, J. Radioanal. Nucl. Chem., 37 (1976) 727.

    Google Scholar 

  22. J. W. Hassler, Purification with Activated Carbon: General Properties of Activated Carbons, 1963, p. 345.

  23. I. Rau, A. Gonzalo, M. Valiente, J. Radioanal. Nucl. Chem., 246 (2000) 597.

    Article  CAS  Google Scholar 

  24. S. Sarmani, A. K. H. Wood, S. Hamzah, A. Majid, J. Radioanal. Nucl. Chem., 169 (1993) 255.

    Article  CAS  Google Scholar 

  25. A. M. Yusof, M. M. Rahman, A. K. H. Wood, J. Radioanal. Nucl. Chem., 259 (2004) 479.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yusof, A.M., Rahman, M.M. & Wood, A.K.H. Adsorption of some toxic elements from water samples on modified activated carbon, activated carbon and red soil using neutron activation analysis. J Radioanal Nucl Chem 271, 191–197 (2007). https://doi.org/10.1007/s10967-007-0128-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-0128-y

Keywords

Navigation