Skip to main content

Advertisement

Log in

Mechanical performances, in-vitro antibacterial study and bone stress prediction of ceramic particulates filled polyether ether ketone nanocomposites for medical applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyether ether ketone (PEEK) and PEEK composites are viable candidates for dental and ortho implants due to their superior properties. This research aims to develop the functionalized ceramic nanoparticles such as TiO2 (T-NPs) and SiO2 (S-NPs) reinforced biopolymer nanocomposites by injection moulding. The morphologies of fabricated composite group were analysed by FE-SEM. The effect of T-NPs, S-NPs, and combined effect of TS-NPs of different wt.% reinforcements (4, 8, 12, 16, and 20 wt.%) with PEEK matrix on mechanical properties such as tensile, flexural, compressive, and shore D hardness had been investigated. The excellent mechanical strengths were obtained in 16 wt.% T/PEEK, 12 wt.% S/PEEK, and 16 wt.% TS/PEEK group. Then, the in-vitro antibacterial property of these selected composite group was investigated and found improved antibacterial activity compared to neat PEEK. Four different thread profiles were selected and analysed using 3D-FEM to reduce the stress distribution at bone-implant contact region. The minimum stress distribution range was achieved in the cortical bone model as 0.11–1.74 MPa due to trapezium profile threaded implants. Thus, the developed composites were found to be promising material for medical implant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kuo MC, Tsai CM, Huang JC, Chen M (2005) PEEK composites reinforced by nano-sized SiO2 and A12O3 particulates. Mater Chem Phys 90(1):185–195

    Article  CAS  Google Scholar 

  2. Chen SG, Yang J, Jia YG, Lu B, Ren L (2019) TiO2 and PEEK reinforced 3d printing pmma composite resin for dental denture base applications. Nanomaterials 9(7):1049

    Article  CAS  PubMed Central  Google Scholar 

  3. Gong Y, Tian W, Zhang P, Chen J, Zhang Y, Sun Z (2019) Slip casting and pressureless sintering of Ti3AlC2. J Adv Ceram 8(3):367–376

    Article  CAS  Google Scholar 

  4. Alamgir M, Nayak GC, Mallick A, Sahoo S (2021) Effects of TiO2 and GO nanoparticles on the thermomechanical properties of bioactive poly-HEMA nanocomposites. Iran Polym J 30(10):1089–1099

    Article  CAS  Google Scholar 

  5. Tu-Morn M, Pairoh N, Sutapun W, Trongsatitkul T (2019) Effects of titanium dioxide nanoparticle on enhancing degradation of polylactic acid/low density polyethylene blend films. Mater Today Proc 17:2048–2061

    Article  CAS  Google Scholar 

  6. Tangudom P, Martín-Fabiani I, Prapagdee B, Wimolmala E, Markpin T, Sombatsompop N (2021) Improvement of mechanical-antibacterial performances of AR/PMMA with TiO2 and HPQM treated by N-2(aminoethyl)-3-aminopropyl trimethoxysilane. J Reinf Plast Compos 40(13):477–489

    Article  CAS  Google Scholar 

  7. Mourad AHI, Mozumder MS, Mairpady A, Pervez H, Kannuri UM (2017) On the injection molding processing parameters of HDPE-TiO2 nanocomposites. Materials (Basel) 10(1):1–25

    Article  CAS  Google Scholar 

  8. Shi G, Cao Z, Yan X, Wang Q (2019) In-situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance. Mater Chem Phys 26:121778

    Article  CAS  Google Scholar 

  9. Zuo Y, Chen K, Li P, He X, Li W, Wu Y (2020) Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite. Int J Biol Macromol 157:177–186

    Article  CAS  PubMed  Google Scholar 

  10. Yu M, Huang J, Zhu T, Lu J, Liu J, Li X, Yan X, Liu F (2020) Liraglutide-loaded PLGA/gelatin electrospun nanofibrous mats promote angiogenesis to accelerate diabetic wound healing: Via the modulation of miR-29b-3p. Biomater Sci 8(15):4225–4238

    Article  CAS  PubMed  Google Scholar 

  11. Lu Z, Wang W, Zhang J, Bártolo P, Gong H, Li J (2020) Electrospun highly porous poly(L-lactic acid)-dopamine-SiO2 fibrous membrane for bone regeneration. Mater Sci Eng C 117:111359

    Article  CAS  Google Scholar 

  12. Wu X, Liu X, Wei J, Ma J, Deng F, Wei S (2012) Nano-TiO2/PEEK bioactive composite as a bone substitute material: In vitro and in vivo studies. Int J Nanomedicine 7:1215–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Aumnakmanee S, Yodpiji N, Jantong N, Jongprasithporn M (2018) Finite element analysis of dental implant prosthetics. Mater Today Proc 5(3):9525–9534

    Article  Google Scholar 

  14. Dhatrak P, Shirsat U, Sumanth S, Deshmukh V (2018) Finite Element Analysis and Experimental Investigations on Stress Distribution of Dental Implants around Implant-Bone Interface. Mater Today Proc 5(2):5641–5648

    Article  CAS  Google Scholar 

  15. Pirmoradian M, Naeeni HA, Firouzbakht M, Toghraie D, khabaz MK, Darabi R (2020) Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch. Comput Methods Programs Biomed 187

  16. Ryu HS, Namgung C, Lee JH, Lim YJ (2014) The influence of thread geometry on implant osseointegration under immediate loading: A literature review. J Adv Prosthodont 6(6):547–554

    Article  PubMed  PubMed Central  Google Scholar 

  17. Niroomand MR, Arabbeiki M (2020) Implant stability in different implantation stages: Analysis of various interface conditions. Informatics Med 19:100317

    Google Scholar 

  18. Xian P, Chen Y, Gao S, Qian J, Zhang W, Udduttula A, Huang N, Wan G (2020) Polydopamine (PDA) mediated nanogranular-structured titanium dioxide (TiO2) coating on polyetheretherketone (PEEK) for oral and maxillofacial implants application. Surf Coatings Technol 401:126282

    Article  CAS  Google Scholar 

  19. Sharma C, Kalra T, Kumar M, Bansal A, Chawla AK (2020) To Evaluate the Influence of Different Implant Thread Designs on Stress Distribution of Osseointegrated Implant: A Three-Dimensional Finite-Element Analysis Study–An In Vitro Study. Dent J Adv Stud 8(1):9–16

    Article  Google Scholar 

  20. Gupta S (2016) Dental Implants and Dentures : Open Access A Recent Updates on Zirconia Implants : A Literature Review 1(1):1–6

    Google Scholar 

  21. Thanigachalam M, Muthusamy Subramanian AV (2022) In-vitro cytotoxicity assessment and cell adhesion study of functionalized nTiO2 reinforced PEEK biocompatible polymer composite. Polymer-Plastics Technology and Materials 61(5):566–576

    CAS  Google Scholar 

  22. Thanigachalam M, Muthusamy Subramanian AV (2022) Evaluation of PEEK-TiO2-SiO2 nanocomposite as biomedical implants with regard to in-vitro biocompatibility and material characterization. J Biomater Sci Polym Ed 33(6):727–746

    Article  CAS  PubMed  Google Scholar 

  23. Harting R, Barth M, Bührke T, Pfefferle RS, Petersen S (2017) Functionalization of polyethetherketone for application in dentistry and orthopedics. Bio Nano Materials 18(1–2)

  24. Ghomi ER, Khorasani SN, Kichi MK, Dinari M, Ataei S, Enayati MH, Koochaki MS, Neisiany RE (2020) Synthesis and characterization of TiO2/acrylic acid-co-2-acrylamido-2-methyl propane sulfonic acid nanogel composite and investigation its self-healing performance in the epoxy coatings. Colloid Polym Sci 298(2):213–223

    Article  CAS  Google Scholar 

  25. Balaji Ayyanar C, Marimuthu K (2020) Investigation on the morphology, thermal properties, and in vitro cytotoxicity of the fish scale particulates filled high-density polyethylene composite. Polym Polym Compos 28(4):285–296

    CAS  Google Scholar 

  26. Suresh V, Hariharan N, Paramesh S, Prasath Kumar M, Arun Prasath P (2016) Tribological behaviour of aluminium/boron carbide (B4C)/graphite (Gr) hybrid metal matrix composite under dry sliding motion by using ANOVA. Int J Mater Prod Technol 53(3–4):204–217

    Article  CAS  Google Scholar 

  27. Schwitalla AD, Spintig T, Kallage I, Müller WD (2015) Flexural behavior of PEEK materials for dental application. Dent Mater 31(11):1377–1384

    Article  CAS  PubMed  Google Scholar 

  28. Kolken HMA, Lietaert K, van der Sloten T, Pouran B, Meynen A, Van Loock G, Weinans H, Scheys L, Zadpoor AA (2020) Mechanical performance of auxetic meta-biomaterials. J Mech Behav Biomed Mater 104:103658

    Article  CAS  PubMed  Google Scholar 

  29. Xu A, Liu X, Gao X, Deng F, Deng Y, Wei S (2015) Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite. Mater Sci Eng 48:592–598

    Article  CAS  Google Scholar 

  30. Bokare A, Sanap A, Pai M, Sabharwal S, Athawale AA (2018) Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation. Colloids Surfaces B Biointerfaces 102:273–280

    Article  CAS  Google Scholar 

  31. Shehzad A, Qureshi M, Jabeen S, Ahmad R, Alabdalall AH, Aljafary MA, Al-Suhaimi E (2018) Synthesis, characterization and antibacterial activity of silver nanoparticles using Rhazya stricta. PeerJ 12:1–15

    Google Scholar 

  32. Chen S, Yang J, Li K, Lu B, Ren L (2018) Carboxylic acid-functionalized tio2 nanoparticle-loaded pmma/ peek copolymer matrix as a dental resin for 3d complete denture manufacturing by stereolitographic technique. Int J Food Prop 21(1):2557–2565

    Article  CAS  Google Scholar 

  33. Jaganathan SK, Prasath Mani M, Ayyar M, Rathanasamy R (2019) Biomimetic electrospun polyurethane matrix composites with tailor made properties for bone tissue engineering scaffolds. Polym Test 78:1

    Article  CAS  Google Scholar 

  34. Aruna STR, Shilpa M, Lakshmi RV, Balaji N, Kavitha V, Gnanamani A (2018) Plasma Sprayed Hydroxyapatite Bioceramic Coatings from Coprecipitation Synthesized Powder: Preparation, Characterization and in vitro Studies. Trans Indian Ceram Soc 77(2):90–99

    Article  CAS  Google Scholar 

  35. Ramesh M, Sudharsan P (2018) Experimental Investigation of Mechanical and Morphological Properties of Flax-Glass Fiber Reinforced Hybrid Composite using Finite Element Analysis. SILICON 10(3):747–757

    Article  CAS  Google Scholar 

  36. Gonçalves J, Lima P, Krause B, Pötschke P, Lafont U, Gomes JR, Abreu CS, Paiva MC, Covas JA (2018) Electrically conductive polyetheretherketone nanocomposite filaments: From production to fused deposition modeling. Polymers 10(8):1–20

    Article  CAS  Google Scholar 

  37. Ahamad A, Kumar P (2021) Mechanical and thermal performance of PEEK/PEI blend matrix reinforced with surface modified halloysite nanotubes. J Thermoplast Compos Mater. https://doi.org/10.1177/08927057211028629

    Article  Google Scholar 

  38. Tzibula S, Lovinger Z, Rittel D (2018) Dynamic tension of ductile polymers: Experimentation and modelling. Mech Mater 123:30–42

    Article  Google Scholar 

  39. Ravichandran M, Veerappan G, Dhinakaran V, Katiyar JK (2021) Optimization of tribo-mechanical properties of boron carbide reinforced magnesium metal matrix composite. Proc Inst Mech Eng Part J J Eng Tribol 1–13

  40. Yoon JI, Kim JG, Jung JM, Jeong HJ, Lee S, Kim HS, Lee DJ, Shahbaz M (2016) Obtaining reliable true plastic stress-strain curves in a wide range of strains using digital image correlation in tensile testing. J Korean Inst Met Mater 54(4):231–236

    Article  CAS  Google Scholar 

  41. Keyvani A, Mostafavi N, Bahamirian M, Sina H, Rabiezadeh A (2020) Synthesis and phase stability of zirconia-lanthania-ytterbia-yttria nanoparticles; a promising advanced TBC material. J Asian Ceram Soc 8(2):336–344

    Article  Google Scholar 

  42. Ayode Otitoju T, Ugochukwu Okoye P, Chen G, Li Y, Onyeka Okoye M, Li S (2020) Advanced ceramic components: Materials, fabrication, and applications. J Ind Eng Chem 85:34–65

    Article  CAS  Google Scholar 

  43. Díez-Pascual AM, Díez-Vicente AL (2015) Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications. ACS Appl Mater Interfaces 7(9):5561–5573

    Article  PubMed  CAS  Google Scholar 

  44. Vargas MA, Rodríguez-Páez JE (2019) Facile Synthesis of TiO 2 Nanoparticles of Different Crystalline Phases and Evaluation of Their Antibacterial Effect Under Dark Conditions Against E. coli. J Clust Sci 30(2):379–391

  45. Andreiotelli M, Wenz HJ, Kohal RJ (2009) Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 20(4):32–47

    Article  PubMed  Google Scholar 

  46. Almutairi AS, Walid MA, Alkhodary MA (2018) The effect of osseodensification and different thread designs on the dental implant primary stability. F1000Research 7:1–9

  47. Hu F et al (2019) Comparison of Three Different Types of Two-Implant-Supported Magnetic Attachments on the Stress Distribution in Edentulous Mandible. Comput. Math. Methods Med. https://doi.org/10.1155/2019/6839517

  48. Mao Q, Su K, Zhou Y, Hossaini-Zadeh M, Lewis GS, Du J (2019) Voxel-based micro-finite element analysis of dental implants in a human cadaveric mandible: Tissue modulus assignment and sensitivity analyses. J Mech Behav Biomed Mater 94:229–237

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The author(s) have no funding from any agencies to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mugilan Thanigachalam.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest was reported between the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthusamy Subramanian, A.V., Thanigachalam, M. Mechanical performances, in-vitro antibacterial study and bone stress prediction of ceramic particulates filled polyether ether ketone nanocomposites for medical applications. J Polym Res 29, 318 (2022). https://doi.org/10.1007/s10965-022-03180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03180-6

Keywords

Navigation