Skip to main content
Log in

Structure–Performance Relationship(SPR) of Ziegler Natta catalysts(TiCl4/MgCl2-based) in ethylene/1-butene and ethylene/1-hexene copolymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the relationship between the characteristics of catalysts and polymerization conditions with catalyst behavior and polymer properties in the ethylene/α-olefin (co)polymerization using Ziegler–Natta catalyst (TiCl4/MgCl2 based) is investigated. The results showed that the differences in the characteristics of a catalyst such as particle size,surface area, porosity and particle size distribution of catalyst, and different polymerization conditions such as the presence of comonomer, can be a very important factors in determining catalyst behavior and product properties. For this purpose, two catalysts (cat1, cat2) TiCl4/MgCl2 based have been used and ethylene/α-olefin(co)polymerization was performed in slurry phase. Comparison results of DSC copolymers produced using both cat1 and cat2 showed that copolymerization in the presence of comonomers using cat2 catalyst shows better activity and comonomer incorporation than cat1 due to higher titanium content in the surface, larger surface area, possibility of access to more active centers. Besides that results of RMS showed that the presence of comonomer 1-butene and 1-hexane in the copolymers due to the increase in melt flow index, molecular weight has decreased and as a result, the storage and loss modulus has decreased. The inverse method with Van Ruymbeke model showed that the presence of 1-butaene comonomer in copolymerization with cat1 caused a change in the distribution of active catalytic centers and narrowed the molecular weight distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jandaghian MH, Maddah Y, Nikzinat E, Masoori M, Sepahi A, Rashedi R, Houshmandmoayed S, Davand R, Afzali K (2021) J Macromol Sci Part A Pure Appl Chem 0:1

  2. Masoori M, Ahmadjo S, Mortazavi SMM, Vakili MJ (2017) Macromol Sci Part A Pure Appl Chem 54:140

    Article  CAS  Google Scholar 

  3. Galli P, Vecellio G (2004) J Polym Sci Part A Polym Chem 42:396

    Article  CAS  Google Scholar 

  4. Akram MA, Liu X, Jiang B, Zhang B, Ali A, Fu Z, Fan Z (2021) J Macromol Sci Part A Pure Appl Chem

  5. Jiang B, Weng Y, Zhang S, Zhang Z, Fu Z, Fan Z (2018) J Catal 360:57

    Article  CAS  Google Scholar 

  6. Barabanov AA, Sukulova VV, Matsko MA, Zakharov VA (2015) J Mol Catal A Chem 396:328

    Article  CAS  Google Scholar 

  7. Mikenas TB, Koshevoy EI, Cherepanova SV, Zakharov VAJ (2016) Polym. Sci. Part A. Polym Chem 54:2545

    Article  CAS  Google Scholar 

  8. McDaniel MP, Schwerdtfeger ED, Jensen MD (2014) J Catal 314:109

    Article  CAS  Google Scholar 

  9. Aigner P, Averina E, Garoff T, Paulik C (2017) Macromol React Eng 11:1

    Article  CAS  Google Scholar 

  10. Echevskaya LG, Matsko MA, Mikenas TB, Nikitin VE, Zakharov VA (2006) J Appl Polym Sci 102:5436

    Article  CAS  Google Scholar 

  11. Chen Y (2006) ping; Fan, Z. qiang. Eur Polym J 42:2441

    Article  CAS  Google Scholar 

  12. Garoff T, Mannonen L, Väänänen M, Eriksson V, Kallio K, Waldvogel P (2010) J Appl Polym Sci 115:12

    Article  CAS  Google Scholar 

  13. Matsumoto S (2004) Catal Today 90:183

    Article  CAS  Google Scholar 

  14. Kašpar J, Fornasiero P, Graziani M (1999) Catal Today 50:285

    Article  Google Scholar 

  15. Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433

    Article  CAS  Google Scholar 

  16. Heck RM, Farrauto RJ (2001) Appl Catal A Gen 221:443

    Article  CAS  Google Scholar 

  17. Occhipinti G, Bjørsvik HR, Jensen VR (2006) J Am Chem Soc 128:6952

    Article  CAS  PubMed  Google Scholar 

  18. Peña MA, Fierro JLG (1981) Chem Rev 2001:101

    Google Scholar 

  19. Corma A, Serra JM, Serna P, Moliner M (2005) J Catal 232:335

    Article  CAS  Google Scholar 

  20. Wada T, Funako P, Chammingkwan P, Thakura A (2020) Catalysis 389

  21. Hassan Nejad M, Ferrari P, Pennini G, Cecchin G (2008) J Appl Polym Sci 108:3388

    Article  CAS  Google Scholar 

  22. Ko YS, Woo SI (2003) J Polym. Sci. Part A Polym Chem 41:2171

    Article  CAS  Google Scholar 

  23. Zannetti R. Marega C, Marigo A, Martorana A (1988) Polymer Science 26:31

  24. Taniike T, Funako T, Terano M (2014) J Catal 311:33

    Article  CAS  Google Scholar 

  25. Kang KK, Shiono T, Jeong YT, Lee DHO (1999) J Appl Polym Sci 71:293

    Article  CAS  Google Scholar 

  26. Zheng X, Pimplapure MS, Weichen G, Loos J (2006) Macromol Rapid Commun 27:15

    Article  CAS  Google Scholar 

  27. Paredes B, Grieken RV, Carrero A, Suarez I, Soares JBP (2011) Macromol Chem Phys 212:1590

    Article  CAS  Google Scholar 

  28. Sukulova VV, Barabanov AA, Matsko MA, Zakharov VA, Mikenas TB (2019) J Catal 369:276

    Article  CAS  Google Scholar 

  29. Shen X, Hu J, Fu Z, Lou J, Fan Z (2013) Catal Commun 30:66

    Article  CAS  Google Scholar 

  30. Taniike T, Tien Nguyen B, Takahashi S, Quoc Vu T, Ikeya M, Terano MJ (2011) Polym Sci Part A Polym Chem 49:4005

    Article  CAS  Google Scholar 

  31. Nikolaeva MI, Matsko MA, Mikenas TB, Echevskaya LG, Zakharov VA (2012) J Polym Sci 8:125

    Google Scholar 

  32. Xia S, Fu Z, Huang B, Xu J, Fan Z (2012) J Mol Catal A Chem 355:161

    Article  CAS  Google Scholar 

  33. Sun L, Hsu CC, Bacon DWJ (1994) J Polym Sci Part A Polym Chem 32:2135

    Article  CAS  Google Scholar 

  34. Xu Z, Feng L, Wang D, Yang S (1835) Macro Molecular 11:192

  35. Jiang B, Liu X, Weng Y, Fu Z, He A, Fan Z (2019) J Catal 369:324

    Article  CAS  Google Scholar 

  36. Hoff RE (2018) Handbook of transition metal polymerization catalysts.

  37. Marques MMV, Nunes CP, Tait PJ, Dias AR (1993) J Polym Sci Part A Polym Chem 31:209

    Article  CAS  Google Scholar 

  38. Pillon L, Picolli A Magnesium dichlorid-ethanol adducts and catalyst components obtained therefrom. US 2005/0014632 Al

  39. Mao B, Yang A, Zheng Y, Yang J, Li Z, all of Beijing C Catalyst system for use in olefinic polymerization. US 1988/ 4784983

  40. Shchetnikava V, Slot JJM, Van Ruymbeke E (2014) Macromolecules 47:3350

    Article  CAS  Google Scholar 

  41. Van Ruymbeke E, Bailly C, Keunings R, Vlassopoulos D (2006) Macromolecules 39:6248

    Article  CAS  Google Scholar 

  42. van Ruymbeke E, Keunings R, Bailly CJ (2005) Nonnewton Fluid Mech 128:7

    Article  CAS  Google Scholar 

  43. Funako T, Chammingkwan P, Taniike T (2015) Terano M 2:65

    Google Scholar 

  44. Mikenas TB, Koshevoy EI, Zakharov VA (2017) J Polym Sci Part A Polym Chem 55:2298

    Article  CAS  Google Scholar 

  45. Taniike T, Thang VQ, Binh NT, Hiraoka Y, Uozumi T, Terano M (2011) Macromol Chem Phys 212:723

    Article  CAS  Google Scholar 

  46. Ye ZY, Wang L, Feng LF, Gu XP, Chen HH, Zhang PY, Pan J, Jiang S, Feng LX (2002) J Polym Sci Part A Polym Chem 40:3112

    Article  CAS  Google Scholar 

  47. Pongchan T, Praserthdam P, Jongsomjit B (2020) Bull Chem React Eng Catal 15:55

    Article  CAS  Google Scholar 

  48. Kissin YV, Mink RI, Nowlin TE (1999) Polym Chemis 134:37

  49. Camurati I, Cavicchi B, Dall’Occo T, Piemontesi F (2001) Macromol Chem Phys 202:701

    Article  CAS  Google Scholar 

  50. Liu B, Tian Z, Jin Y, Zhao N, Liu B (2018) Macromol React Eng 12:1

    Google Scholar 

  51. Mehdiabadi S, Lhost O, Vantomme A, Soares JBP (2021) Ind Eng Chem Res 60:9739

    Article  CAS  Google Scholar 

  52. Alshaiban A, Soares JBP (2012) Macromol React Eng 6:265

    Article  CAS  Google Scholar 

  53. Wang Q, Murayama N, Liu B, Terano M (2005) Macromol Chem Phys 206:961

    Article  CAS  Google Scholar 

  54. Li P, Tu S, Xu T, Fu Z, Fan Z (2015) J Appl Polym Sci 132:1

    Google Scholar 

  55. Rahaman M, Parvez MA, Soares JBP, Hussein IA (2014) Int J Polym Sci 2014

  56. Wood-Adams PM, Dealy JM, DeGroot AW, Redwine OD (2000) Macromolecules 33:7489

    Article  CAS  Google Scholar 

  57. Rahaman M, Hussein IA, Aldalbahi A, Parvez A, Soares JBP (2018) Macromol Res 26:295

    Article  CAS  Google Scholar 

  58. Zhang K, Liu P, Wang WJ, Li BG, Liu W, Zhu S (2018) Macromolecules 51:8790

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Masoori.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoori, M., Rashedi, R., Sepahi, A. et al. Structure–Performance Relationship(SPR) of Ziegler Natta catalysts(TiCl4/MgCl2-based) in ethylene/1-butene and ethylene/1-hexene copolymerization. J Polym Res 29, 317 (2022). https://doi.org/10.1007/s10965-022-03173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03173-5

Keywords

Navigation