Skip to main content
Log in

Preparation and physicochemical properties of mwcnt doped polyvinyl chloride / poly (ε-caprolactone) blend

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, a poly ε-caprolactone / polyvinyl chloride, PCL: PVC, (1:1) blend was composited with different concentrations of multiwalled carbon nanotube (MWCNT). The effect of the various compositions of MWCNT on the blend was investigated by Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR), Differential scanning calorimetry (DSC), Thermogravimetric Analysis (TGA), and Scanning Electron Microscope (SEM). Also, the mechanical test was explored using the tensile test. Additionally, one of the composites was trained to study shape memory properties. The results showed that the composites can return their original form, therefore neither PCL nor MWCNT had any side effect on the shape memory properties of the PCL. The mechanical properties of the composites have been significantly influenced by adding MWCNT to the blend. The ultimate stress, resilience, and modulus of the toughness of the composite diminished with increasing MWCNT, however, the fracture point and ductility were comparably improved. Furthermore, the addition of MWCNT to the blend increased the melting temperature and improved the thermal stability of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y, Weng GJ (2018) Electrical conductivity of carbon nanotube-and graphene-based nanocomposites. Micromechan Nanomechan Compos Sol, Springer pp 123–156

  2. Park HJ, Badakhsh A, Im IT, Kim MS, Park CW (2016) Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Appl Therm Eng 107:907–917

    Article  CAS  Google Scholar 

  3. Pande S, Singh BP, Mathur RB, Dhami TL, Saini P, Dhawan SK (2009) Improved Electromagnetic Interference Shielding Properties of MWCNT–PMMA Composites Using Layered Structures. Nanoscale Res Lett 4(4):327

    Article  Google Scholar 

  4. Burmistrov I, Gorshkov N, Ilinykh I, Muratov D, Kolesnikov E, Anshin S, Mazov I, Issi JP, Kusnezov D (2016) Improvement of carbon black based polymer composite electrical conductivity with additions of MWCNT. Composites Sci Technol 129:79–85

    Article  CAS  Google Scholar 

  5. Bocharov GS, Eletskii AV, Knizhnik AA (2016) Nonlinear resistance of polymer composites with carbon nanotube additives in the percolation state. Tech Phys 61(10):1506–1510

    Article  CAS  Google Scholar 

  6. Wang J, Shuhui Yu, Luo S, Chu B, Sun R, Wong CP (2016) Investigation of nonlinear I-V behavior of CNTs filled polymer composites. Mater Sci Eng B 206:55–60

    Article  CAS  Google Scholar 

  7. Xiaohui Xu, Fan P, Jia Ren Yu, Cheng JR, Zhao J, Song R (2018) Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL) /multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Composites Sci Technol 168:255–262

    Article  Google Scholar 

  8. Feng S, Chen Y, Meng C, Mai B, Wu Q, Gao H, Liang G, Zhu F (2015) Study on the condensed state physics of poly(ε-caprolactone) nano-aggregates in aqueous dispersions. J Colloid Interface Sci 450:264–271

    Article  CAS  Google Scholar 

  9. Gumede TP, Luyt AS, Muller AJ (2018) Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes

  10. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2018) PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 29(7–9):863–893

    Article  CAS  Google Scholar 

  11. Boudenne A, Ibos L, Fois M, Majesté JC, Géhin E (2005) Electrical and thermal behavior of polypropylene filled with copper particles. Compos A Appl Sci Manuf 36(11):1545–1554

    Article  Google Scholar 

  12. Kusy RP, Corneliussen RD (1975) The thermal conductivity of nickel and copper dispersed in poly(vinyl chloride). Polym Eng Sci 15(2):107–112

    Article  CAS  Google Scholar 

  13. Hezma AM, Elashmawi IS, Abdelrazek EM, Rajeh A, Kamal M (2017) Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes. Progress in Natural Science: Materials International 27(3):338–343

    Article  CAS  Google Scholar 

  14. Abdelrazek EM, Elashmawi IS, Hezma AM, Rajeh A, Kamal M (2016) Effect of an encapsulate carbon nanotubes (CNTs) on structural and electrical properties of PU/PVC nanocomposites. Physica B 502:48–55

    Article  CAS  Google Scholar 

  15. Hemza AM, Elashmawi IS, Rajeh A, Kamal M (2016) Spectroscopic and thermal properties of PU/PVC doped with multi walled carbon nanotube. Der Pharm Chem 8:201–208

    Google Scholar 

  16. Luo F, Pan L, Pei X, He R, Wang J, Wan Q (2015) PCL–CNT Nanocomposites, in: K.K. Kar, J.K. Pandey, S. Rana (Eds.), Handbook of Polymer Nanocomposites. Proc Perform Applic: Vol B: Carb Nanot Based Polym Compos, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 173–193

  17. Lankone RS, Wang J, Ranville JF, Howard Fairbrother D (2017) Photodegradation of polymer-CNT nanocomposites: effect of CNT loading and CNT release characteristics. Environ Sci Nano 4(4):967–982

    Article  CAS  Google Scholar 

  18. Pekdemİr ME (2021) Thermal properties and shape memory behavior of titanium carbide reinforced poly (vinyl chloride) / poly (ε-caprolactone) blend nanocomposites. Polym Plast Technol Mater 1–9

  19. Pekdemir ME, Qader IN, Öner E, Aydoğmuş E, Kök M, Dağdelen F (2021) Investigation of structure, mechanical, and shape memory behavior of thermally activated poly(ε-caprolactone): azide-functionalized poly(vinyl chloride) binary polymer blend films. Eur Phys J Plus 136(8):800

    Article  CAS  Google Scholar 

  20. Pekdemir ME, Öner E, Kök M, Qader IN (2021) Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers. Iran Polym J 30(6):633–641

    Article  CAS  Google Scholar 

  21. Rajendran S, Uma T (2000) Effect of ZrO2 on conductivity of PVC–LiBF4–DBP polymer electrolytes. Mater Lett 44(3–4):208–214

    Article  CAS  Google Scholar 

  22. Rajendran S, Uma T (2000) Conductivity studies on PVC/PMMA polymer blend electrolyte. Mater Lett 44(3–4):242–247

    Article  CAS  Google Scholar 

  23. Rajendran S, Uma T (2000) Lithium ion conduction in PVC–LiBF4 electrolytes gelled with PMMA. J Power Sources 88(2):282–285

    Article  CAS  Google Scholar 

  24. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273(2):381–387

    Article  CAS  Google Scholar 

  25. Pihtili G, Torğut G, Biryan F (2020) Electrical properties of two-armed poly (Ɛ-CL-co-BMA) composites filled with bentonite. J Polym Res 27:1–11

    Article  Google Scholar 

  26. İlboğa S, Pekdemir E, Coşkun M (2019) Cloud point temperature, thermal and dielectrical behaviors of thermosensitive block copolymers based n-isopropylacrylamide. Polym Sci Ser B 61(1):32–41

    Article  Google Scholar 

  27. Lesiak Stobinski B, Lesiak LK, Tóth J, Biniak S, Trykowski G, Judek J (2010) Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloy Compd 501(1):77–84

    Article  Google Scholar 

  28. Al Naim AF, AlFannakh H, Arafat S, Ibrahim SS (2020) Characterization of PVC/MWCNTs Nanocomposite: Solvent Blend. Sci Eng Compos Mater 27(1):55–64

    Article  Google Scholar 

  29. Francis E, Ko HU, Kim JW, Kim HC, Nandakumar Kalarikkal K, Varughese JK, Thomas S (2018) High-k dielectric percolative nanocomposites based on multiwalled carbon nanotubes and polyvinyl chloride. J Mater Chem C 6(30):8152–8159

    Article  CAS  Google Scholar 

  30. Duan T, Lv Y, Haojun Xu, Jin J, Wang Z (2018) Structural Effects of Residual Groups of Graphene Oxide on Poly(ε-Caprolactone)/Graphene Oxide Nanocomposite. Curr Comput-Aided Drug Des 8(7):270

    Google Scholar 

  31. Can E, Bucak S, Kınacı E, Çalıkoğlu AC, Köse GT (2014) Polybutylene Succinate (PBS) – Polycaprolactone (PCL) Blends Compatibilized with Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) Copolymer for Biomaterial Applications. PPTEn 53(11):1178–1193

    CAS  Google Scholar 

  32. Abdallah AB, Kallel A, Gamaoun F, Tcharkhtchi A (2019) Enzymatic Hydrolysis of Poly (Caprolactone) and its Blend with Styrene–Butadiene–Styrene (40% PCL/60% SBS). J Polym Environ 27(11):2341–2351

    Article  Google Scholar 

  33. Liu W, Zhang R, Huang M, Dong X, Wei Xu, Ray N, Zhu J (2016) Design and structural study of a triple-shape memory PCL/PVC blend. Polymer 104:115–122

    Article  CAS  Google Scholar 

  34. Haruna H, Pekdemir ME, Tukur A, Coşkun M (2020) Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. J Therm Anal Calorim 139(6):3887–3895

    Article  CAS  Google Scholar 

  35. Coşkun M, Harun H, Pekdemir ME (2019) A study on aminated PVC/oxidized MWCNT composites. Acad J Sci Res 7(2):86–94

    Google Scholar 

  36. Cardinaud R, McNally T (2013) Localization of MWCNTs in PET/LDPE blends. Eur Polymer J 49(6):1287–1297

    Article  CAS  Google Scholar 

  37. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR (2003) Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Poly 44(4):1287–1294

    Article  CAS  Google Scholar 

  38. Gashti MP, Allahyary H, Nasraei P, Gashti MP (2013) SiO2-kaolinite affecting the surface properties of ternary poly(vinyl chloride)/silica/kaolinite nanocomposites. Fib Polym 14(11):1870–1876

    Article  CAS  Google Scholar 

  39. Meng ZX, Zheng W, Li L, Zheng YF (2010) Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning. Mater Sci Eng C 30(7):1014–1021

    Article  CAS  Google Scholar 

  40. Huang X, Jiang P, Kim C, Liu F, Yin Yi (2009) Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). Eur Polym J 45(2):377–386

    Article  CAS  Google Scholar 

  41. Mohammadi P, Toivonen MS, Ikkala O, Wagermaier W, Linder MB (2017) Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep 7(1):11860

    Article  Google Scholar 

  42. Wittmaack BK, Volkov AN, Zhigilei LV (2018) Mesoscopic modeling of the uniaxial compression and recovery of vertically aligned carbon nanotube forests. Composites Sci Technol 166:66–85

    Article  CAS  Google Scholar 

  43. Zhang H, Wang H, Zhong W, Qiangguo Du (2009) A novel type of shape memory polymer blend and the shape memory mechanism. Poly 50(6):1596–1601

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by TÜBİTAK under Project No: 119M300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ersin PEKDEMİR.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PEKDEMİR, M.E., KÖK, M., QADER, I.N. et al. Preparation and physicochemical properties of mwcnt doped polyvinyl chloride / poly (ε-caprolactone) blend. J Polym Res 29, 109 (2022). https://doi.org/10.1007/s10965-022-02947-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02947-1

Keywords

Navigation