Skip to main content
Log in

Corrosion properties of organic polymer coating reinforced two-dimensional nitride nanostructures: a comprehensive review

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Due to the harmful effects of corrosion in various industries, researchers aim to create more effective coatings with recent nanotechnology advances to prevent the corrosion of materials. For this purpose, one of the most efficient ways is to use new classes of nanocomposite coatings, obtained by the addition of inorganic nanofillers to the polymer matrix, which superior performance over conventional composite coatings. As a filler, Two-dimensional materials can dramatically change the reduction with economic loss due to their outstanding chemical, mechanical, and thermal properties. To date, the essential nanomaterials used as reinforcements in polymer matrices are graphene and clay. Graphene has a cathodic behavior towards all metals and leads to galvanic corrosion over time. Clay contains ions that increase the ionic content and, consequently, the ionic conductivity of the polymer composites. Ionic and electron conductivity result in the deterioration of the corrosion properties. Today, inorganic nanomaterials such as nitride nanoparticles such as h-BN, h-BCN, and g-C3N4 have significant potential to increase the barrier performance of polymer coatings. These additives have a high-energy barrier against the penetration of corrosive ions, which leads to excellent corrosion protection properties. On the other hand, the BN nanoparticles prevent the galvanic corrosion of metal substrates due to their insulating properties. In this review, the effects of adding the aforementioned nitride nanomaterials to polymer coatings are discussed in terms of the resultant corrosion protection performance, and a comprehensive study on the corrosion resistance of these coatings is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Source: Web of Knowledge)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Fontana MG (2005) Corrosion engineering. Tata McGraw-Hill Education.

  2. Revie RW (2011) Uhlig's corrosion handbook. John Wiley & Sons.

  3. Quraishi MA, Chauhan DS, Saji VS (2020) Heterocyclic Organic Corrosion Inhibitors: Principles and Applications. Elsevier.

  4. Sastri VS (1998) Corrosion inhibitors: principles and applications (no. Sirsi) i9780471976080). Wiley New York.

  5. Sastri VS (2012) Green corrosion inhibitors: theory and practice. John Wiley & Sons.

  6. Jacobson GA (2016) "NACE International’s IMPACT Study Breaks New Ground in Corrosion Management Research and Practice," The Bridge, vol. 46, no. 2.

  7. Hou B et al (2017) "The cost of corrosion in China," npj Materials Degradation, vol. 1, no. 1, pp. 1–10.

  8. Koch  G (2017) "Cost of corrosion," in Trends in oil and gas corrosion research and technologies: Elsevier, pp. 3–30.

  9. Wang Y et al (2016) Sustainable self-healing at ultra-low temperatures in structural composites incorporating hollow vessels and heating elements. R Soc OpenSci 3(9):160488

    Article  Google Scholar 

  10. Liu J et al (2018) Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024. J Alloy Compd 744:728–739

    Article  CAS  Google Scholar 

  11. Njoku DI, Cui M, Xiao H, Shang B, Li Y (2017) Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Sci Rep 7(1):1–15

    Article  CAS  Google Scholar 

  12. Hernández-Padrón G, Rojas F, Castaño V (2006) Development and testing of anticorrosive SiO2/phenolic–formaldehydic resin coatings. Surf Coat Technol 201(3–4):1207–1214

    Article  Google Scholar 

  13. Weng CJ, Chang, CH, Yeh JM (2012) "Polymer nanocomposites in corrosion control," in Corrosion Protection and Control Using Nanomaterials: Elsevier, pp. 330–356.

  14. Tang G, Ren T, Yan Z, Ma L, Hou X, Huang X (2020) "Preparation and anticorrosion resistance of a self‐curing epoxy nanocomposite coating based on mesoporous silica nanoparticles loaded with perfluorooctyl triethoxysilane," J Appl Polym Sci p. 49072.

  15. Skale S, Doleček V, Slemnik M (2007) Substitution of the constant phase element by Warburg impedance for protective coatings. Corros Sci 49(3):1045–1055

    Article  CAS  Google Scholar 

  16. Ramezanzadeh B, Ghasemi E, Mahdavian M, Changizi E, Moghadam MM (2015) Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings. Carbon 93:555–573

    Article  CAS  Google Scholar 

  17. Xiao X et al (2016) Investigation into the synergistic effect of nano-sized materials on the anti-corrosion properties of a waterborne epoxy coating. Int J Electrochem Sci 11:6023–6042

    Article  CAS  Google Scholar 

  18. Mousavifard S, Nouri PM, Attar M, Ramezanzadeh B (2013) The effects of zinc aluminum phosphate (ZPA) and zinc aluminum polyphosphate (ZAPP) mixtures on corrosion inhibition performance of epoxy/polyamide coating. J Ind Eng Chem 19(3):1031–1039

    Article  CAS  Google Scholar 

  19. Atta AM, Mohamed NH, Rostom M, Al-Lohedan HA, Abdullah MM (2019) New hydrophobic silica nanoparticles capped with petroleum paraffin wax embedded in epoxy networks as multifunctional steel epoxy coatings. Prog Org Coat 128:99–111

    Article  CAS  Google Scholar 

  20. Golru SS, Attar M, Ramezanzadeh B (2014) Studying the influence of nano-Al2O3 particles on the corrosion performance and hydrolytic degradation resistance of an epoxy/polyamide coating on AA-1050. Prog Org Coat 77(9):1391–1399

    Article  Google Scholar 

  21. George J, Ishida H (2018) A review on the very high nanofiller-content nanocomposites: Their preparation methods and properties with high aspect ratio fillers. Prog Polym Sci 86:1–39

    Article  CAS  Google Scholar 

  22. Olya N, Ghasemi E, Ramezanzadeh B, Mahdavian M (2020) "Synthesis, characterization and protective functioning of surface decorated Zn-Al layered double hydroxide with SiO2 nano-particles," Surface and Coatings Technology, p. 125512.

  23. Alibakhshi E, Ghasemi E, Mahdavian M, Ramezanzadeh B (2017) Fabrication and characterization of layered double hydroxide/silane nanocomposite coatings for protection of mild steel. J Taiwan Inst Chem Eng 80:924–934

    Article  CAS  Google Scholar 

  24. Davoodi M, Ghasemi E, Ramezanzadeh B, Mahdavian M (2020) Designing a zinc-encapsulated Feldspar as a unique rock-forming tectosilicate nanocontainer in the epoxy coating; improving the robust barrier and self-healing anti-corrosion properties. Constr Build Mater 243:118215

    Article  CAS  Google Scholar 

  25. Melia MA et al (2020) Influence of Clay size on corrosion protection by Clay nanocomposite thin films. Prog Org Coat 140:105489

    Article  CAS  Google Scholar 

  26. Asaldoust S, Ramezanzadeh B (2020) Synthesis and characterization of a high-quality nanocontainer based on benzimidazole-zinc phosphate (ZP-BIM) tailored graphene oxides; a facile approach to fabricating a smart self-healing anti-corrosion system. J Colloid Interface Sci 564:230–244

    Article  CAS  PubMed  Google Scholar 

  27. Javidparvar AA, Naderi R, Ramezanzadeh B (2020a) L-cysteine reduced/functionalized graphene oxide application as a smart/control release nanocarrier of sustainable cerium ions for epoxy coating anti-corrosion properties improvement. J Hazard Mater 389:122135

    Article  CAS  PubMed  Google Scholar 

  28. Mohammadkhani R, Ramezanzadeh M, Saadatmandi S, Ramezanzadeh B (2020) Designing a dual-functional epoxy composite system with self-healing/barrier anti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmental stability and non-toxicity. Chem Eng J 382:122819

    Article  Google Scholar 

  29. Ramezanzadeh M, Ramezanzadeh B, Mahdavian M, Bahlakeh G (2020) Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings. Carbon 161:231–251

    Article  CAS  Google Scholar 

  30. Javidparvar AA, Naderi R, Ramezanzadeh B (2020b) Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: Application in epoxy-based nanocomposite for active corrosion protection. Corros Sci 165:108379

    Article  CAS  Google Scholar 

  31. Akbarzadeh S, Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G (2020) A green assisted route for the fabrication of a high-efficiency self-healing anti-corrosion coating through graphene oxide nanoplatform reduction by Tamarindus indiaca extract. J Hazard Mater 390:122147

    Article  CAS  PubMed  Google Scholar 

  32. Pu N-W et al (2015) Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates. J Power Sources 282:248–256

    Article  CAS  Google Scholar 

  33. Zhou F, Li Z, Shenoy GJ, Li L, Liu H (2013) Enhanced room-temperature corrosion of copper in the presence of graphene. ACS Nano 7(8):6939–6947

    Article  CAS  PubMed  Google Scholar 

  34. Pourhashem S, Rashidi A, Alaei M, Moradi M-A, Maklavany DM (2019) Developing a new method for synthesizing amine functionalized gC 3 N 4 nanosheets for application as anti-corrosion nanofiller in epoxy coatings. SN Applied Sciences 1(1):108

    Article  Google Scholar 

  35. Huang Y-C, Lo T-Y, Chao C-G, Whang W-T (2014) Anti-corrosion characteristics of polyimide/h-boron nitride composite films with different polymer configurations. Surf Coat Technol 260:113–117

    Article  CAS  Google Scholar 

  36. Wang A, Wang C, Fu L, Wong-Ng W, Lan Y (2017) "Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9 (4), 47" ed.

  37. Wirnhier E, Mesch MB, Senker J, Schnick W (2013) "Formation and characterization of melam, melam hydrate, and a melam–melem adduct," Chemistry–A European Journal, vol. 19, no. 6, pp. 2041–2049.

  38. Liebig J (1844) Ueber Mellon und Mellonverbindungen. Justus Liebigs Annalen der Chemie 50(3):337–363

    Article  Google Scholar 

  39. Zhu J-J, Xiao P, Li H-L (2014) C. Carabineiro SA Graphitic carbon nitride: synthesis, properties and applications in catalysis. ACS Appl Mater Interfaces 6:16449–16465

    Article  CAS  PubMed  Google Scholar 

  40. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    Article  CAS  Google Scholar 

  41. Tong Z et al (2017) Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11(1):1103–1112

    Article  CAS  PubMed  Google Scholar 

  42. Liang Q, Li Z, Huang ZH, Kang F, Yang QH (2015) Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Func Mater 25(44):6885–6892

    Article  CAS  Google Scholar 

  43. Shi L, Wang T, Zhang H, Chang K, Ye J (2015) Electrostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal-Organic Framework for Enhanced Photocatalytic CO2 Reduction. Adv Func Mater 25(33):5360–5367

    Article  CAS  Google Scholar 

  44. Liu J et al (2015) A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett 15(8):5137–5142

    Article  CAS  PubMed  Google Scholar 

  45. Xiao J, Xie Y, Nawaz F, Wang Y, Du P, Cao H (2016) Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants. Appl Catal B 183:417–425

    Article  CAS  Google Scholar 

  46. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27(13):2150–2176

    Article  CAS  PubMed  Google Scholar 

  47. Gaddam SK, Pothu R, Boddula R (2020) Graphitic carbon nitride (g-C3N4) reinforced polymer nanocomposite systems—A review. Polym Compos 41(2):430–442

    Article  CAS  Google Scholar 

  48. Li LH, Xing T, Chen Y, Jones R (2014) Boron nitride nanosheets for metal protection. Advanced materials interfaces 1(8):1300132

    Article  Google Scholar 

  49. Abbas S, Abbas A, Liu Z, Tang C (2020) The two-dimensional boron nitride hierarchical nanostructures: Controllable synthesis and superhydrophobicity. Mater Chem Phys 240:122145

    Article  CAS  Google Scholar 

  50. Wentorf R Jr (1957) Cubic form of boron nitride. J Chem Phys 26(4):956–956

    Article  CAS  Google Scholar 

  51. Stehle Y et al (2015) Synthesis of hexagonal boron nitride monolayer: control of nucleation and crystal morphology. Chem Mater 27(23):8041–8047

    Article  CAS  Google Scholar 

  52. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3(6):404–409

    Article  CAS  PubMed  Google Scholar 

  53. Hu S et al (2014) Proton transport through one-atom-thick crystals. Nature 516(7530):227–230

    Article  CAS  PubMed  Google Scholar 

  54. Pakdel A, Zhi C, Bando Y, Golberg D (2012) Low-dimensional boron nitride nanomaterials. Mater Today 15(6):256–265

    Article  CAS  Google Scholar 

  55. Golberg D et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4(6):2979–2993

    Article  CAS  PubMed  Google Scholar 

  56. Lee CH, Xie M, Kayastha V, Wang J, Yap YK (2010) Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem Mater 22(5):1782–1787

    Article  CAS  Google Scholar 

  57. Terrones M et al (2008) Experimental and theoretical studies suggesting the possibility of metallic boron nitride edges in porous nanourchins. Nano Lett 8(4):1026–1032

    Article  CAS  PubMed  Google Scholar 

  58. Lindsay L, Broido D (2011) Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Physical Review B 84(15):155421

    Article  Google Scholar 

  59. Chen Y, Zou J, Campbell SJ, Le Caer G (2004) Boron nitride nanotubes: Pronounced resistance to oxidation. Appl Phys Lett 84(13):2430–2432

    Article  CAS  Google Scholar 

  60. Suryavanshi AP, Yu M-F, Wen J, Tang C, Bando Y (2004) Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 84(14):2527–2529

    Article  CAS  Google Scholar 

  61. Zheng M et al (2012) Radial mechanical properties of single-walled boron nitride nanotubes. Small 8(1):116–121

    Article  CAS  PubMed  Google Scholar 

  62. Lee CH, Drelich J, Yap YK (2009) Superhydrophobicity of boron nitride nanotubes grown on silicon substrates. Langmuir 25(9):4853–4860

    Article  CAS  PubMed  Google Scholar 

  63. Mirzaee M, Rashidi A,  Zolriasatein A, Abadchi MR (2020) "A simple, low cost, and template-free method for synthesis of boron nitride using different precursors," Ceramics International.

  64. Lei W, Portehault D, Dimova R, Antonietti M (2011) Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors. J Am Chem Soc 133(18):7121–7127

    Article  CAS  PubMed  Google Scholar 

  65. Beniwal S et al (2017) Graphene-like boron–carbon–nitrogen monolayers. ACS Nano 11(3):2486–2493

    Article  CAS  PubMed  Google Scholar 

  66. Arunkumar S, Jegatheesh V, Soundharya R, Alka MJ, Mayavan S (2018) BCN based oil coatings for mild steel under aggressive chloride ion environment. Appl Surf Sci 449:287–294

    Article  CAS  Google Scholar 

  67. Kumar N et al (2011) Remarkable Uptake of CO2 and CH4 by Graphene-Like Borocarbonitrides, BxCyNz. Chemsuschem 4(11):1662–1670

    Article  CAS  PubMed  Google Scholar 

  68. Rao C, Gopalakrishnan K (2017) Borocarbonitrides, B x C y N z: Synthesis, Characterization, and Properties with Potential Applications. ACS Appl Mater Interfaces 9(23):19478–19494

    Article  CAS  PubMed  Google Scholar 

  69. Kawaguchi M (1997) B/C/N materials based on the graphite network. Adv Mater 9(8):615–625

    Article  CAS  Google Scholar 

  70. Wang S et al (2012) BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 51(17):4209–4212

    Article  CAS  Google Scholar 

  71. Terrones M et al (2003) Production and State-of-the-Art Characterization of Aligned Nanotubes with Homogeneous BCxN (1≤ x≤ 5) Compositions. Adv Mater 15(22):1899–1903

    Article  CAS  Google Scholar 

  72. Bhavya E, Thakur SS, Choudhury B (2020) "Advanced Materials for Aerospace Applications," in Multiscale Modelling of Advanced Materials: Springer, pp. 39–65.

  73. Zhang Y-Y, Pei Q-X, Liu H-Y, Wei N (2017) Thermal conductivity of a h-BCN monolayer. Phys Chem Chem Phys 19(40):27326–27331

    Article  CAS  PubMed  Google Scholar 

  74. Raidongia K, Nag A, Hembram K, Waghmare UV, Datta R, Rao C (2010) "BCN: a graphene analogue with remarkable adsorptive properties," Chemistry–A European Journal, vol. 16, no. 1, pp. 149–157.

  75. Yu J et al (2000) Semiconducting boron carbonitride nanostructures: nanotubes and nanofibers. Appl Phys Lett 77(13):1949–1951

    Article  CAS  Google Scholar 

  76. Enouz-Védrenne S, Stéphan O, Glerup M, Cochon JL, Colliex C, Loiseau A (2008) Effect of the synthesis method on the distribution of C, B, and N elements in multiwall nanotubes: a spatially resolved electron energy loss spectroscopy study. J Phys Chem C 112(42):16422–16430

    Article  Google Scholar 

  77. Piazza F et al (2005) Formation of boron carbonitride nanotubes from in situ grown carbon nanotubes. Diam Relat Mater 14(3–7):965–969

    Article  CAS  Google Scholar 

  78. Karbhal I, Devarapalli RR, Debgupta J, Pillai VK, Ajayan PM, Shelke MV (2016) "Facile Green Synthesis of BCN Nanosheets as High‐Performance Electrode Material for Electrochemical Energy Storage," Chemistry–A European Journal, vol. 22, no. 21, pp. 7134–7140.

  79. Zeng H et al (2010) “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett 10(12):5049–5055

    Article  CAS  PubMed  Google Scholar 

  80. Pourhashem S, Ghasemy E, Rashidi A, Vaezi MR (2019) "A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings," Journal of Coatings Technology and Research, pp. 1–37.

  81. Lauret J et al (2005) Optical transitions in single-wall boron nitride nanotubes. Phys Rev Lett 94(3):037405

    Article  CAS  PubMed  Google Scholar 

  82. Chang C-W, Okawa D, Garcia H, Majumdar A, Zettl A (2008) Breakdown of Fourier’s law in nanotube thermal conductors. Phys Rev Lett 101(7):075903

    Article  CAS  PubMed  Google Scholar 

  83. Xiao Y et al (2004) Specific heat of single-walled boron nitride nanotubes. Appl Phys Lett 84(23):4626–4628

    Article  CAS  Google Scholar 

  84. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3(1):20–30

    Article  CAS  PubMed  Google Scholar 

  85. Sane AR et al (2019) "An investigation of the physical, thermal and mechanical properties of fired clay/SiC ceramics for thermal energy storage," Journal of Thermal Analysis and Calorimetry, pp. 1–10.

  86. Xia L-Y, Zhong H, Liu G-Y, Li X-G (2009) Electron bandstructure of kaolinite and its mechanism of flotation using dodecylamine as collector. J Cent South Univ 16(1):73–79

    Article  CAS  Google Scholar 

  87. Folaranmi J (2009) Effect of additives on the thermal conductivity of clay. Leonardo J Sci 14:74–77

    Google Scholar 

  88. Osipov V (1975) Structural bonds and the properties of clays. Bulletin of the International Association of Engineering Geology-Bulletin de l’Association Internationale de Géologie de l’Ingénieur 12(1):13–20

    Article  Google Scholar 

  89. Chen Y et al (2019) Facile synthesis of bimodal macroporous g-C3N4/SnO2 nanohybrids with enhanced photocatalytic activity. Sci Bull 64(1):44–53

    Article  CAS  Google Scholar 

  90. Caux M, Fina F, Irvine JT, Idriss H, Howe R (2017) Impact of the annealing temperature on Pt/g-C3N4 structure, activity and selectivity between photodegradation and water splitting. Catal Today 287:182–188

    Article  CAS  Google Scholar 

  91. Mortazavi B, Cuniberti G, Rabczuk T (2015) Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study. Comput Mater Sci 99:285–289

    Article  CAS  Google Scholar 

  92. Fang L, Ohfuji H, Shinmei T, Irifune T (2011) Experimental study on the stability of graphitic C3N4 under high pressure and high temperature. Diam Relat Mater 20(5–6):819–825

    Article  CAS  Google Scholar 

  93. Prakash A (2016) "Deposition and characterization studies of boron carbon nitride (BCN) thin films prepared by dual target sputtering,"

  94. 百瀬英明, 谷口信人, and 大竹尚登, "320 BCN 膜の気相合成及びその耐熱性の評価 (OS 薄膜特性)," in 機械材料・材料加工技術講演会講演論文集 2001.9, 2001, pp. 133–134: 一般社団法人 日本機械学会.

  95. Xia Y, He Y, Chen C, Wu Y, Zhong F, Chen J (2020) Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating. React Funct Polym 146:104405

    Article  Google Scholar 

  96. Wang N, Zhang Y, Chen J, Zhang J, Fang Q (2017) Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings. Prog Org Coat 109:126–134

    Article  Google Scholar 

  97. Wei Q, Zhang F, Li J, Li B, Zhao C (2010) Oxidant-induced dopamine polymerization for multifunctional coatings. Polym Chem 1(9):1430–1433

    Article  CAS  Google Scholar 

  98. Cheng C et al (2012) The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. J Membr Sci 417:228–236

    Article  Google Scholar 

  99. Zhao F-Y et al (2016) High-flux positively charged nanocomposite nanofiltration membranes filled with poly (dopamine) modified multiwall carbon nanotubes. ACS Appl Mater Interfaces 8(10):6693–6700

    Article  CAS  PubMed  Google Scholar 

  100. Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR (2017a) Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros Sci 115:78–92

    Article  CAS  Google Scholar 

  101. Deshpande PP, Jadhav NG, Gelling VJ, Sazou D (2014) Conducting polymers for corrosion protection: a review. J Coat Technol Res 11(4):473–494

    Article  CAS  Google Scholar 

  102. Ghasemi-Kahrizsangi A, Shariatpanahi H, Neshati J, Akbarinezhad E (2015) Corrosion behavior of modified nano carbon black/epoxy coating in accelerated conditions. Appl Surf Sci 331:115–126

    Article  CAS  Google Scholar 

  103. Wu L-K, Zhang J-T, Hu J-M, Zhang J-Q (2012) Improved corrosion performance of electrophoretic coatings by silane addition. Corros Sci 56:58–66

    Article  CAS  Google Scholar 

  104. Chen C, He Y, Xiao G, Zhong F, Xia Y, Wu Y (2020) Graphic C3N4-assisted dispersion of graphene to improve the corrosion resistance of waterborne epoxy coating. Prog Org Coat 139:105448

    Article  CAS  Google Scholar 

  105. Malav JK, Rathod R, Umare S, Vidyasagar D (2018) Structural, thermal and anticorrosion properties of electroactive polyimide/g-C3N4 composites. Materials Research Express 5(9):095309

    Article  Google Scholar 

  106. Xu JH, Ye S, Di Ding C, Tan LH, Fu JJ (2018) Autonomous self-healing supramolecular elastomer reinforced and toughened by graphitic carbon nitride nanosheets tailored for smart anticorrosion coating applications. J Mater Chem A 6(14):5887–5898

    Article  CAS  Google Scholar 

  107. Xia Y et al (2020) Incorporating SiO2 functionalized g-C3N4 sheets to enhance anticorrosion performance of waterborne epoxy. Prog Org Coat 147:105768

    Article  CAS  Google Scholar 

  108. Pourhashem S, Duan J, Guan F, Wang N, Gao Y, Hou B (2020) New effects of TiO2 nanotube/g-C3N4 hybrids on the corrosion protection performance of epoxy coatings. J Mol Liq 317:114214

    Article  CAS  Google Scholar 

  109. Chopra NG et al (1995) Boron nitride nanotubes. Science 269(5226):966–967

    Article  CAS  PubMed  Google Scholar 

  110. Zettl A, Chang C, Begtrup G (2007) "A new look at thermal properties of nanotubes," physica status solidi (b), vol. 244, no. 11, pp. 4181–4183.

  111. Zhi C, Bando Y, Tan C, Golberg D (2005) Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun 135(1–2):67–70

    Article  CAS  Google Scholar 

  112. Smith MW et al (2009) Very long single-and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology 20(50):505604

    Article  PubMed  Google Scholar 

  113. Golberg D et al (2007) Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett 7(7):2146–2151

    Article  CAS  Google Scholar 

  114. Zhi C, Bando Y, Tang C, Honda S, Kuwahara H, Golberg D (2006) Boron nitride nanotubes/polystyrene composites. J Mater Res 21(11):2794–2800

    Article  CAS  Google Scholar 

  115. Balakrishnan T, Sathiyanarayanan S, Mayavan S (2015) Advanced anticorrosion coating materials derived from sunflower oil with bifunctional properties. ACS Appl Mater Interfaces 7(35):19781–19788

    Article  CAS  PubMed  Google Scholar 

  116. Jarvis KL et al (2017) Comparing three techniques to determine the water vapour transmission rates of polymers and barrier films. Surfaces and Interfaces 9:182–188

    Article  CAS  Google Scholar 

  117. Husain E, Narayanan TN, Taha-Tijerina JJ, Vinod S, Vajtai R, Ajayan PM (2013) Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel. ACS Appl Mater Interfaces 5(10):4129–4135

    Article  CAS  PubMed  Google Scholar 

  118. Ramezanzadeh B, Vakili H, Amini R (2015) The effects of addition of poly (vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate. Appl Surf Sci 327:174–181

    Article  CAS  Google Scholar 

  119. Devikala S, Kamaraj P, Arthanareeswari M (2018) Corrosion resistance behavior of PVA/TiO2 composite in 3.5% NaCl. Materials Today: Proceedings 5(2):8672–8677

    CAS  Google Scholar 

  120. Li J et al (2018) Boron nitride nanosheets reinforced waterborne polyurethane coatings for improving corrosion resistance and antifriction properties. Eur Polymer J 104:57–63

    Article  Google Scholar 

  121. Morsi S, Mohamed H, Ghany NA (2019) Development of advanced-functional polyurethane/red iron oxide composites as protective one coating systems for steel. Prog Org Coat 136:105236

    Article  CAS  Google Scholar 

  122. Ye X, Wang Z, Ma L, Wang Q, Chu A (2019) Zinc oxide array/polyurethane nanocomposite coating: Fabrication, characterization and corrosion resistance. Surf Coat Technol 358:497–504

    Article  CAS  Google Scholar 

  123. Lacombre CV, Bouvet G, Trinh D, Mallarino S, Touzain S (2017) Water uptake in free films and coatings using the Brasher and Kingsbury equation: a possible explanation of the different values obtained by electrochemical Impedance spectroscopy and gravimetry. Electrochim Acta 231:162–170

    Article  Google Scholar 

  124. Huang H, Wang H, Xie Y, Dong D, Jiang X, Zhang X (2019) Incorporation of boron nitride nanosheets in zinc phosphate coatings on mild steel to enhance corrosion resistance. Surf Coat Technol 374:935–943

    Article  CAS  Google Scholar 

  125. Sarkar N, Sahoo G, Das R, Prusty G, Sahu D, Swain SK (2016) Anticorrosion performance of three-dimensional hierarchical PANI@ BN nanohybrids. Ind Eng Chem Res 55(11):2921–2931

    Article  CAS  Google Scholar 

  126. Alam J, Riaz U, Ahmad S (2009) High performance corrosion resistant polyaniline/alkyd ecofriendly coatings. Curr Appl Phys 9(1):80–86

    Article  Google Scholar 

  127. Lei F, Wu B, Sun H, Jiang F, Yang J, Sun D (2018) Simultaneously Improving the Anticorrosion and Antiscratch Performance of Epoxy Coatings with Graphite Fluoride via Large-Scale Preparation. Ind Eng Chem Res 57(49):16709–16717

    Article  CAS  Google Scholar 

  128. Muhammad M et al (2020) "Enhancing the corrosion resistance of Q235 mild steel by incorporating poly (dopamine) modified h-BN nanosheets on zinc phosphate-silane coating," Surface and Coatings Technology, p. 125682.

  129. Cui M, Ren S, Qin S, Xue Q, Zhao H, Wang L (2017) Non-covalent functionalized hexagonal boron nitride nanoplatelets to improve corrosion and wear resistance of epoxy coatings. RSC advances 7(70):44043–44053

    Article  CAS  Google Scholar 

  130. Wu Y et al (2020a) Synergistic functionalization of h-BN by mechanical exfoliation and PEI chemical modification for enhancing the corrosion resistance of waterborne epoxy coating. Prog Org Coat 142:105541

    Article  CAS  Google Scholar 

  131. Sangeetha S, Kalaignan GP (2015) Tribological and electrochemical corrosion behavior of Ni–W/BN (hexagonal) nano-composite coatings. Ceram Int 41(9):10415–10424

    Article  CAS  Google Scholar 

  132. Deng Y et al (2019) Preparation of water-dispersible corrosion inhibitors for composite lacquer coatings with excellent properties. Prog Org Coat 127:276–285

    Article  CAS  Google Scholar 

  133. Yu J, Zhao W, Liu G, Wu Y, Wang D (2018) Anti-corrosion mechanism of 2D nanosheet materials in waterborne epoxy coatings. Surface Topography: Metrology and Properties 6(3):034019

    CAS  Google Scholar 

  134. Wu Y, Yu J, Zhao W, Wang C, Wu B, Lu G (2019) Investigating the anti-corrosion behaviors of the waterborne epoxy composite coatings with barrier and inhibition roles on mild steel. Prog Org Coat 133:8–18

    Article  CAS  Google Scholar 

  135. Xie Y et al (2020) "A novel approach to fabricate polyacrylate modified graphene oxide for improving the corrosion resistance of epoxy coatings," Colloids and Surfaces A: Physicochemical and Engineering Aspects, p. 124627.

  136. Ramezanzadeh M, Ramezanzadeh B, Sari MG, Saeb MR (2020) Corrosion resistance of epoxy coating on mild steel through polyamidoamine dendrimer-covalently functionalized graphene oxide nanosheets. J Ind Eng Chem 82:290–302

    Article  CAS  Google Scholar 

  137. Rocca E, Faiz H, Dillmann P, Neff D, Mirambet F (2019) Electrochemical behavior of thick rust layers on steel artefact: Mechanism of corrosion inhibition. Electrochim Acta 316:219–227

    Article  CAS  Google Scholar 

  138. Zou F, Thierry D (1997) Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings. Electrochim Acta 42(20–22):3293–3301

    Article  CAS  Google Scholar 

  139. Jorcin J-B, Aragon E, Merlatti C, Pébère N (2006) Delaminated areas beneath organic coating: A local electrochemical impedance approach. Corros Sci 48(7):1779–1790

    Article  CAS  Google Scholar 

  140. Song D, Wan H, Tu X, Li W (2020) A better understanding of failure process of waterborne coating/metal interface evaluated by electrochemical impedance spectroscopy. Prog Org Coat 142:105558

    Article  CAS  Google Scholar 

  141. Nardeli JV, Fugivara CS, Taryba M, Montemor M, Ribeiro SJ, Benedetti AV (2020) Novel healing coatings based on natural-derived polyurethane modified with tannins for corrosion protection of AA2024-T3. Corros Sci 162:108213

    Article  CAS  Google Scholar 

  142. Cui M et al (2017) Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets. Appl Surf Sci 397:77–86

    Article  CAS  Google Scholar 

  143. Fan C, Shi J, Dilger K (2019) Water uptake and interfacial delamination of an epoxy-coated galvanized steel: An electrochemical impedance spectroscopic study. Prog Org Coat 137:105333

    Article  CAS  Google Scholar 

  144. Deyab M, Ouarsal R, Al-Sabagh A, Lachkar M, El Bali B (2017) Enhancement of corrosion protection performance of epoxy coating by introducing new hydrogenphosphate compound. Prog Org Coat 107:37–42

    Article  CAS  Google Scholar 

  145. Ziat Y, Hammi M, Zarhri Z, Laghlimi C (2020) Epoxy coating modified with graphene: a promising composite against corrosion behavior of copper surface in marine media. J Alloy Compd 820:153380

    Article  CAS  Google Scholar 

  146. Chilkoor G et al (2020) Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon 159:586–597

    Article  CAS  Google Scholar 

  147. Sun W et al (2019) The role of graphene loading on the corrosion-promotion activity of graphene/epoxy nanocomposite coatings. Compos B Eng 173:106916

    Article  Google Scholar 

  148. Zhang C, He Y, Li F, Di H, Zhang L, Zhan Y (2016) h-BN decorated with Fe3O4 nanoparticles through mussel-inspired chemistry of dopamine for reinforcing anticorrosion performance of epoxy coatings. J Alloy Compd 685:743–751

    Article  CAS  Google Scholar 

  149. Shang W et al (2020) Study on the relationship between graphene dispersion and corrosion resistance of graphene composite film. Appl Surf Sci 511:145518

    Article  CAS  Google Scholar 

  150. Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR (2017b) Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog Org Coat 111:47–56

    Article  CAS  Google Scholar 

  151. Wu Y et al (2020b) Non-covalently functionalized boron nitride by graphene oxide for anticorrosive reinforcement of water-borne epoxy coating. Colloids Surf, A 587:124337

    Article  CAS  Google Scholar 

  152. Huang H, Huang X, Xie Y, Tian Y, Jiang X, Zhang X (2019) Fabrication of h-BN-rGO@ PDA nanohybrids for composite coatings with enhanced anticorrosion performance. Prog Org Coat 130:124–131

    Article  CAS  Google Scholar 

  153. Liu H, Hao W, Qin Y (2020) "In situ preparation and properties of waterborne polyurethane/edge-isocyanated hexagonal boron nitride composite dispersions," Journal of Coatings Technology and Research, pp. 1–11.

  154. Wan P et al (2020) Synthesis of PDA-BN@ f-Al2O3 hybrid for nanocomposite epoxy coating with superior corrosion protective properties. Prog Org Coat 146:105713

    Article  CAS  Google Scholar 

  155. Gao X et al (2020) "Two-dimensional nanosheets functionalized water-borne polyurethane nanocomposites with improved mechanical and anti-corrosion properties," Inorganic and Nano-Metal Chemistry, pp. 1–9.

  156. Huang Z, Zhao W, Zhao W, Ci X, Li W (2020) "Tribological and anti-corrosion performance of epoxy resin composite coatings reinforced with differently sized cubic boron nitride (CBN) particles," Friction, pp. 1–15.

  157. Hassannejad H, Nouri A (2018) Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution. J Mol Liq 254:377–382

    Article  CAS  Google Scholar 

  158. Zhang Z, Ge B, Men X, Li Y (2016) Mechanically durable, superhydrophobic coatings prepared by dual-layer method for anti-corrosion and self-cleaning. Colloids Surf, A 490:182–188

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by the Iranian Elite National Foundation (Bonyad Melli Nokhbegan) thorugh Shahid Chamran’s Award. The authors wish to acknowledge the technical assistance provided by Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alimorad Rashidi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaee, M., Rashidi, A., Zolriasatein, A. et al. Corrosion properties of organic polymer coating reinforced two-dimensional nitride nanostructures: a comprehensive review. J Polym Res 28, 62 (2021). https://doi.org/10.1007/s10965-021-02434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02434-z

Keywords

Navigation