Skip to main content

Advertisement

Log in

Dielectric and mechanical properties of polyimide fiber reinforced cyanate ester resin composites with varying resin contents

  • ORIGINALPAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyimide (PI)/ bisphenol A dicyanate esters (BADCy) composite laminates with varying resin contents were prepared by filament winding and autoclave molding process. The laminates exhibited ultralow dielectric constant (ε of 3.15–3.25) and dielectric loss (tanδ of 0.004–0.006) as well as excellent mechanical properties. When the resin content was 35.6%, the composite achieved outstanding comprehensive properties with tensile strength and modulus equal to 1485.1 MPa and 80.9 GPa, respectively, and the inter-laminar shear strength (ILSS) up to 66.2 MPa. The failure mode of laminates followed an explosive gage middle (XGM) mechanism, which suggested a favorable interface between fiber and resin. According to the mixed law equation, PI fiber at a frequency of 10.2 GHz exhibited dielectric constant of 3.41 ± 0.03 and dielectric loss of about 0.002–0.004. The successful preparation of PI fiber reinforced BADCy composite with low dielectric constant provides new ideas for material design and selection of lightweight high-strength structural-functional integrated composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Machida A, Rizkalla SH, Triantafillou TC (2002) Fiber-reinforced polymer composites for construction-state-of-the-art review. J Compos Constr 6(2):73–87

    Article  CAS  Google Scholar 

  2. Rosen BW (1964) Tensile failure of fibrous composites. AIAA J 2(11):1985–1991

    Article  Google Scholar 

  3. Chiang W-Y, Ao J-Y (1995) Effect of surface treatment of carbon fiber on the electrical and mechanical properties of high-impact polystyrene composite. J Polym Res 2(2):83–89

    Article  CAS  Google Scholar 

  4. Ju A, Guang S, Xu H (2014) A high performance carbon fiber precursor containning ultra-high molecular weight acrylonitrile copolymer: preparation and properties. J Polym Res 21(10):569

    Article  Google Scholar 

  5. Cheng SZD, Wu Z, Mark E, Steven LCH, Frank WH (1991) A high-performance aromatic polyimide fibre: 1. Structure, properties and mechanical-history dependence. Polymer 32(10):1803–1810

    Article  CAS  Google Scholar 

  6. Eashoo M, Shen D, Wu Z, Lee CJ, Harris FW, Cheng SZD (1993) High-performance aromatic polyimide fibres: 2. Thermal mechanical and dynamic properties. Polymer 34(15):3209–3215

    Article  CAS  Google Scholar 

  7. Zhang M, Niu H, Chang J, Ge Q, Cao L, Wu D (2015) High-performance fibers based on copolyimides containing benzimidazole and ether moieties: molecular packing, morphology, hydrogen-bonding interactions and properties. Polym Eng Sci 55(11):2615–2625

    Article  CAS  Google Scholar 

  8. Dixit BC, Dixit RB, Desai DJ (2010) Synthesis and characterization of novel ion-exchange resin based on polyimide containing 8-hydroxyquinoline as a pendent groups. J Polym Res 17(4):481–488

    Article  CAS  Google Scholar 

  9. Chang J, Niu H, Zhang M, Ge Q, Li Y, Wu D (2015) Structures and properties of polyimide fibers containing ether units. J Mater Sci 50(11):4104–4114

    Article  CAS  Google Scholar 

  10. Yin C, Dong J, Tan W, Lin J, Chen D, Zhang Q (2015) Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety. Polymer 75:178–186

    Article  CAS  Google Scholar 

  11. Ohya H, Kudryavsev V, Semenova SI (1997) Polyimide membranes: applications, fabrications and properties. CRC Press, Boca Raton

    Book  Google Scholar 

  12. Hsiao S-H, Chen Y-J (2002) Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. Eur Polym J 38(4):815–828

    Article  CAS  Google Scholar 

  13. Hasegawa M, Sensui N, Shindo Y, Yokota R (1999) Structure and properties of novel asymmetric biphenyl type polyimides. Homo- and copolymers and blends. Macromolecules 32(2):387–396

    Article  CAS  Google Scholar 

  14. Kaneda T, Katsura T, Nakagawa K, Makino H, Horio M (1986) High-strength–high-modulus polyimide fibers I. one-step synthesis of spinnable polyimides. J Appl Polym Sci 32(1):3133–3149

    Article  CAS  Google Scholar 

  15. Kaneda T, Katsura T, Nakagawa K, Makino H, Horio M (1986) High-strength–high-modulus polyimide fibers II. Spinning and properties of fibers. J Appl Polym Sci 32(1):3151–3176

    Article  CAS  Google Scholar 

  16. Hasegawa M, Horie K (2001) Photophysics, photochemistry, and optical properties of polyimides. Prog Polym Sci 26(2):259–335

    Article  CAS  Google Scholar 

  17. Zhuo H, Li S, Han E, Zhang D, Liu G, Tian G, Bao J, Wu D (2019) Mechanical properties and failure mechanism of high strength and high modulus polyimide fiber reinforced epoxy composites. Acta Mater Compositae Sin 36(9):2101–2019

    Google Scholar 

  18. Li S, Zhuo H, Han E, Zhang D, Liu G, Tian G, Bao J, Wu D (2020) Preparation and properties of high strength and high modulus polyimide fiber/modified cyanate composites. Acta Mater Compositae Sin 37(01):42–49

    Google Scholar 

  19. Bei R, Chen W, Zhang Y, Liu S, Chi Z, Xu J (2016) Research progress of low dielectric constant polyimide films. Insul Mater 49(08):1–11

    Google Scholar 

  20. Li X, Lei H, Guo J, Wang J, Qi S, Tian G, Wu D (2019) Composition design and properties investigation of BPDA/PDA/TFDB co-polyimide films with low dielectric permittivity. J Appl Polym Sci 136(39):47989

    Article  Google Scholar 

  21. Sèbe G, Cetin NS, Hill CAS, Hughes M (2000) RTM hemp fibre-reinforced polyester composites. Appl Compos Mater 7(5):341–349

    Article  Google Scholar 

  22. Feret V, Ghiasi H, Hubert P (2013) Effect of fibre volume fraction on mixed-mode fracture of a fabric carbon/epoxy composite. Appl Compos Mater 20(4):415–429

    Article  Google Scholar 

  23. Masuram NB, Roux JA, Jeswani AL (2016) Fiber volume fraction influence on Fiber compaction in tapered resin injection Pultrusion manufacturing. Appl Compos Mater 23(3):421–442

    Article  CAS  Google Scholar 

  24. Park SY, Choi CH, Choi WJ, Hwang SS (2019) A comparison of the properties of carbon Fiber epoxy composites produced by non-autoclave with vacuum bag only Prepreg and autoclave process. Appl Compos Mater 26(1):187–204

    Article  CAS  Google Scholar 

  25. Liang H, Shu W, Chen J, Song M, Jia Z, Zhou X (2009) Study on dielectric property of quartz/CE GFRP. Aeronaut Manuf Technol S1:122–125

    Google Scholar 

  26. Li C, Liu J, Chen Q (2003) Recent progress in transparent composites for aerospace. Hi-Tech Fiber Appl 28(06):34–39

    Google Scholar 

  27. Saidane EH, Scida D, Assarar M, Sabhi H, Ayad R (2016) Hybridisation effect on diffusion kinetic and tensile mechanical behaviour of epoxy based flax–glass composites. Compos Part A 87:153–160

    Article  CAS  Google Scholar 

  28. International A (2017) ASTM D 3039 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials West Conshohocken, PA

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Project no. 2017YFB0308103), the National Natural Science Foundation of China (Project no. 51773007), the Science and Technology on Transient Impact Laboratory Foundation (Project no. 6142606183208) and the Fundamental Research Funds for the Central Universities (XK1802-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Tian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, S., Wang, J. et al. Dielectric and mechanical properties of polyimide fiber reinforced cyanate ester resin composites with varying resin contents. J Polym Res 27, 160 (2020). https://doi.org/10.1007/s10965-020-02152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02152-y

Keywords

Navigation