Skip to main content
Log in

The optimization of glycidyl methacrylate based terpolymer monolith synthesis: an effective Candida rugosa lipase immobilization support

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, the optimization of synthesis of terpolymer monolith based on glycidyl methacrylate (GMA), ethylene glycol dimethacrylate (EGDMA) and additional cross-linkers: trimethylolpropanetriacrylate (TMPTA) or triethylene glycol dimethacrylate (TEGDMA) was performed. Moreover, novel vinyl functionalized cross-linkable polymers: ethanolamine (EA)/methacryloyl (MAC) modified poly (methyl methacrylate) (PMMA), and hydrolyzed poly (ethylene-co-vinyl acetate) copolymer (EVOH) modified with MAC either directly or via ethyl malonyl chloride/EA bridging group (m-EVA) were used as cross-linkable polymer to improve mechanical/elastic properties of the obtained monoliths. Optimization procedure, performed applying response surface methodology (RSM), was focused on the production of materials with improved dimensional stability/integrity and porosity with abundance of epoxide groups capable for immobilization of lipase from Candida rugosa (CRL). Structural characterization of the synthesized monoliths was determined using FTIR, Raman and 1H NMR spectroscopies, while morphology/porosity was determined by SEM technique and image analysis; and mechanical properties by diametral compression testing. The most potential monolith containing m-EVA polymeric cross-linker, i.e. GMA/EGDMA/TEGDMA/m-EVA monolith, was used as CRL carrier in a two-step immobilization process. Enzyme loading and the activity of obtained preparations for various initial enzyme concentrations were monitored after 4 and 48 h of immobilization. The resulting catalysts show high potency in biocatalytic reactions with the highest percentage of retained initial lipase activity of 64.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thangaraj B, Solomon PR (2019) Immobilization of Lipases – A Review. Part I: Enzyme Immobilization. ChemBioEng Rev 6:157–166

    CAS  Google Scholar 

  2. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35:126–139

    CAS  Google Scholar 

  3. Cheng W, Li Y, Li X, Bai W, Liang Y (2019) Preparation and characterization of PDA/SiO2 nanofilm constructed macroporous monolith and its application in lipase immobilization. J Taiwan Inst Chem Eng 104:351–359

    CAS  Google Scholar 

  4. Sheldon RA (2007) Enzyme Immobilization: The Quest for Optimum Performance. Adv Synth Catal 349:1289–1307

    CAS  Google Scholar 

  5. Sharma S, Kanwar SS (2014). Sci World J Article ID:625258

  6. Hsissou R, Bekhta A, Khudhair M, Berradi M, El-Aouni N, Elharfi A (2019). J Cheml Technol Metall 54:1128–1136

    Google Scholar 

  7. Zhou C, Li R, Luo W, Chen Y, Zou H, Liang M, Li Y (2016) The preparation and properties study of polydimethylsiloxane-based coatings modified by epoxy resin. J Polym Res 23:14

    Google Scholar 

  8. Matte CR, Bordinhão C, Poppe JK, Benvenutti EV, Costa TMH, Rodrigues RC, Hertza PF, Ayub MAZ (2017). J Braz Chem Soc 28:1430–1439

    CAS  Google Scholar 

  9. Vaidya BK, Ingavle GC, Ponrathnam S, Nene SN (2012) Poly(allyl glycidyl ether-co-ethylene glycol dimethacrylate) copolymer beads as support for covalent immobilization of l-aminoacylase. React Funct Polym 72:687–694

    CAS  Google Scholar 

  10. Banjanac K, Mihailović M, Prlainović N, Stojanović M, Carević M, Marinković A, Bezbradica D (2016) Cyanuric chloride functionalized silica nanoparticles for covalent immobilization of lipase. J Chem Technol Biotechnol 91:439–448

    CAS  Google Scholar 

  11. Palomo JM, Fernandez-Lorente G, Mateo C, Ortiz C, Fernandez-Lafuente R, Guisan JM (2002) Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzym Microb Technol 31:775–783

    CAS  Google Scholar 

  12. Rahman A, Iqbal M, Rahman F, Fu D, Yaseen M, Lv Y, Omer M, Garver M, Yang L, Tan T (2012) Synthesis and characterization of reactive macroporous poly(glycidyl methacrylate-triallyl isocyanurate-ethylene glycol dimethacrylate) microspheres by suspension polymerization: Effect of synthesis variables on surface area and porosity. J Appl Polym Sci 124:915–926

    CAS  Google Scholar 

  13. Milosavić N, Prodanović R, Velićković D, Dimitrijević A (2017) Macroporous Poly(GMA-co-EGDMA) for Enzyme Stabilization. Methods Mol Biol 1504:139–147

    PubMed  Google Scholar 

  14. Slabospitskaya MY, Vlakh EG, Saprykina NN, Tennikova TB (2008). J Appl Polym Sci 111:692–700

    Google Scholar 

  15. Bedair M, El Rassi Z (2005) Affinity chromatography with monolithic capillary columns. J Chromatogr A 1079:236–245

    CAS  PubMed  Google Scholar 

  16. Rober M, Walter J, Vlakh E, Stahl F, Kasper C, Tennikova T (2009) New 3-D microarray platform based on macroporous polymer monoliths. Anal Chim Acta 644:95–103

    CAS  PubMed  Google Scholar 

  17. Liu W, Duan H, Meng X, Qin D, Wang X, Zhang J (2013) Immobilization ofCandida lipolyticalipase on macroporous beaded terpolymers with epoxy groups. J Appl Polym Sci 127:4251–4255

    CAS  Google Scholar 

  18. Zhou X, Xue B, Sun Y (2001) Enhancing Protein Capacity of Rigid Macroporous Polymeric Adsorbent. Biotechnol Prog 17:1093–1098

    CAS  PubMed  Google Scholar 

  19. Acquah C, Danquah MK, Moy CKS, Ongkudon CM (2016). J Appl Polym Sci 133:43507

    Google Scholar 

  20. Tambe SP, Singh SK, Patri M, Kumar D (2008) Ethylene vinyl acetate and ethylene vinyl alcohol copolymer for thermal spray coating application. Prog Org Coat 62:382–386

    CAS  Google Scholar 

  21. Vukoje I, Džunuzović E, Vodnik V, Dimitrijević S, Ahrenkiel P, Nedeljković J (2014) Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles. J Mater Sci 49:6838–6844

    CAS  Google Scholar 

  22. Sontheimer H, Crittenden JC, Scott SR (1988) Activated carbon for water treatment. DVGW-Forschungsstelle, Engler-Bunte-Institut, Universitat Karlsruhe (TH), Germany, Karlsruhe

    Google Scholar 

  23. Banjanac K, Mihailović M, Prlainović N, Ćorović M, Carević M, Marinković A, Bezbradica D (2016) Epoxy-silanization - tool for improvement of silica nanoparticles as support for lipase immobilization with respect to esterification activity. J Chem Technol Biotechnol 91:2654–2663

    CAS  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  25. Bidsorkhi HC, Adelnia H, Heidar Pour R, Soheilmoghaddam M (2015) Preparation and characterization of ethylene-vinyl acetate/halloysite nanotube nanocomposites. J Mater Sc 50:3237–3245

    CAS  Google Scholar 

  26. Duan G, Zhang C, Li A, Yang X, Lu L, Wang X (2008) Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template. Nanoscale Res Lett 3:118–122

    PubMed  PubMed Central  Google Scholar 

  27. Peike C, Phondongnok W, Kaltenbach T, Weiss K-A, Koehl M (2014). Open J Renew Energy Sustain Dev 1:14–21

    Google Scholar 

  28. Socrates G (2004). J Raman Spectrosc 35:905–905

    Google Scholar 

  29. Ketels HHT (1989) Synthesis, characterization and applications of ethylene vinylalcohol copolymers. PhD Thesis, Technische Universiteit Eindhoven, Eindhoven

  30. Thomas KJ, Sheeba M, Nampoori VPN, Vallabhan CPG, Radhakrishnan P (2008) Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser. J Opt A Pure Appl Opt 10:055303

    Google Scholar 

  31. Tang M, Hou J, Lei L, Liu X, Guo S, Wang Z, Chen K (2010) Preparation, characterization and properties of partially hydrolyzed ethylene vinyl acetate copolymer films for controlled drug release. Int J Pharm 400:66–73

    CAS  PubMed  Google Scholar 

  32. Abbate M, Martuscelli E, Musto P, Ragosta G, Scarinzi G (1994) Toughening of a highly cross-linked epoxy resin by reactive blending with bisphenol A polycarbonate. I. FTIR spectroscopy. J Polym Sci Part B Polym Phys 32:395–408

    CAS  Google Scholar 

  33. Chen Y, Xu G, Liu X, Pan Q, Zhang Y, Zeng D, Sun Y, Ke H, Cheng K (2018) A gel single ion conducting polymer electrolyte enables durable and safe lithium ion batteriesviagraft polymerization. RSC Adv 8:39967–39975

    CAS  Google Scholar 

  34. Zych A, Verdelli A, Soliman M, Pinalli R, Vachon J, Dalcanale E (2019) Polym. Chem 10:1741–1750

    CAS  Google Scholar 

  35. Liu G, Liu Z, Zou W, Li Z, Peng J, Cheng W, Xu S (2009). Acta Chim Slov 56:946–952

    CAS  Google Scholar 

  36. Taleb K, Markovski J, Milosavljević M, Marinović-Cincović M, Rusmirović J, Ristić M, Marinković A (2015) Chem Eng. J 279:66–78

    CAS  Google Scholar 

  37. Vukoje I, Džunuzović E, Lončarević D, Dimitrijević S, Ahrenkiel P, Nedeljković J (2017) Synthesis, characterization, and antimicrobial activity of silver nanoparticles on poly(GMA‐co‐EGDMA) polymer support. Polym Compos 38:1206–1214

    CAS  Google Scholar 

  38. Chaudhary V, Sharma S (2019) Suspension polymerization technique: parameters affecting polymer properties and application in oxidation reactions. J Polym Res 26:102

    Google Scholar 

  39. Nuraje N, Khan W, Lei Y, Ceylan M, Asmatulu R (2013) Superhydrophobic electrospun nanofibers. J Mater Chem A 1:1929–1946

    CAS  Google Scholar 

  40. Mateo C, Pessela BCC, Grazu V, Torres R, López-Gallego F, Guisan JM, Fernandez-Lafuente R (2001) One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnol Bioeng 76:269–276

    CAS  PubMed  Google Scholar 

  41. Natalello A, Ami D, Brocca S, Lotti M, Doglia SM (2005) Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by Fourier-transform infrared spectroscopy. Biochem J 385:511–517

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Prlainovic N, Bezbradica D, Knezevic-Jugovic Z, Marinković A, Mijin D (2011) Immobilization of enzymes onto carbon nanotubes. Hem Ind 65:423–430

    CAS  Google Scholar 

  43. Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44:1061–1076

    CAS  Google Scholar 

  44. Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE (2004) Raman Spectroscopic Characterization of Secondary Structure in Natively Unfolded Proteins: α-Synuclein. J Am Chem Soc 126:2399–2408

    CAS  PubMed  Google Scholar 

  45. Orellana F, Lisperguer J (2011). J Chil Chem Soc 56:8–11

    Google Scholar 

  46. Soheilmoghaddam M, Wahit MU, Yussuf AA, Al-Saleh MA, Tuck Whye W (2014) Characterization of bio regenerated cellulose/sepiolite nanocomposite films prepared via ionic liquid. Polym Test 33:121–130

    CAS  Google Scholar 

  47. Kamal MZ, Yedavalli P, Deshmukh MV, Rao NM (2013) Lipase in aqueous-polar organic solvents: Activity, structure, and stability. Protein Sci 22:904–915

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    CAS  PubMed  Google Scholar 

  49. Prlainović N, Knežević-Jugović Z, Mijin D, Bezbradica D (2011) Immobilization of lipase from Candida rugosa on Sepabeads®: the effect of lipase oxidation by periodates. Bioprocess Biosyst Eng 34:803–810

    PubMed  Google Scholar 

  50. Bayramoǧlu G, Kaya B, Arica MY (2005) Immobilization of lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres. Food Chem 92:261–268

    Google Scholar 

  51. Huang XJ, Yu AG, Xu ZK (2008) Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol 99:5459–5465

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2020-14/200135 and 451-03-68/2020-14/200325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevena Prlainović.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veličić, Z., Rusmirović, J., Prlainović, N. et al. The optimization of glycidyl methacrylate based terpolymer monolith synthesis: an effective Candida rugosa lipase immobilization support. J Polym Res 27, 127 (2020). https://doi.org/10.1007/s10965-020-02127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02127-z

Keywords

Navigation