Skip to main content
Log in

Study on electrochemical properties of CMC-PVA doped NH4Br based solid polymer electrolytes system as application for EDLC

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present work, solid polymer electrolytes (SPEs) based CMC-PVA blend doped with various contents of NH4Br were successfully prepared via solution-casting technique. The prepared samples were then characterized with respect to its thermal and conduction properties by using differential scanning calorimetry (DSC) and impedance spectroscopy. The highest dc conductivity at room temperature is observed to be 3.21 × 10−4 S cm−1 for a sample that consists of 20 wt.% NH4Br which demonstrated good thermal stability of Tg. The CMC-PVA doped NH4Br recorded an increment on the ionic conductivity with the increase in temperature, and thus obeys the Arrhenius behavior. The potential window for the highest conducting sample was found to be plateaued at 1.55 V. The performance of the EDLC fabricated with highest ionic conducting CMC-PVA doped NH4Br was also examined through cyclic voltammetry (CV) and it was shown that the specific capacitance increased as the scan rate reduced. Based on the charge-discharge profile, it is apparent that the proposed system has excellent cyclic retention as it is able to keep the performance of the EDLC at ~88% even after 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Costentin C, Porter TR, Savéant J-M (2017) How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl Mater Interfaces 9(10):8649–8658

    CAS  PubMed  Google Scholar 

  2. Sachdeva A, Bhattacharya B, Singh V, Singh A, Tomar SK, Singh PK (2018) Electrical and structural properties of multi-walled carbon nanotube–doped polymer electrolyte for photo electrochemical device. High Perform Polym 30(8):949–956

    CAS  Google Scholar 

  3. Varzi A, Passerini S (2015) Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder. J Power Sources 300:216–222

    CAS  Google Scholar 

  4. Iro ZS, Subramani C, Dash S (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11(12):10628–10643

    CAS  Google Scholar 

  5. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50

    CAS  Google Scholar 

  6. Kibi Y, Saito T, Kurata M, Tabuchi J, Ochi A (1996) Fabrication of high-power electric double-layer capacitors. J Power Sources 60(2):219–224

    CAS  Google Scholar 

  7. Zubieta L, Bonert R (2000) Characterization of double-layer capacitors for power electronics applications. IEEE Trans Ind Appl 36(1):199–205

    Google Scholar 

  8. Prasanna BP, Avadhani DN, Chaitra K, Nagaraju N, Kathyayini N (2018) Synthesis of polyaniline/MWCNTs by interfacial polymerization for superior hybrid supercapacitance performance. J Polym Res 25(5):123

    Google Scholar 

  9. Lim YS, Tan YP, Lim HN, Huang NM, Tan WT (2013) Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance. J Polym Res 20(6):156

    Google Scholar 

  10. Salunkhe PH, Patil YS, Patil VB, Navale YH, Dhole IA, Ubale VP, Maldar NN, Ghanwat AA (2018) Synthesis and characterization of conjugated porous polyazomethines with excellent electrochemical energy storage performance. J Polym Res 25(7):147

    Google Scholar 

  11. Olad A, Gharekhani H (2016) Study on the capacitive performance of polyaniline/activated carbon nanocomposite for supercapacitor application. J Polym Res 23(8):147

    Google Scholar 

  12. Ranjana PAB, Jeya S, Abarna S, Premalatha M, Arulsankar A, Sundaresan B (2019) Enhancement of Na+ ion conduction in polymer blend electrolyte P(VdF-HFP)–PMMA-NaTf by the inclusion of EC. J Polym Res 26(2):38

    Google Scholar 

  13. Singh PK (2011) Importance of ionic liquid-doped solid polymer (PVPI) electrolyte. International Journal of Sustainable Energy 30(5):270–276

    Google Scholar 

  14. Kadir MFZ, Salleh NS, Hamsan MH, Aspanut Z, Majid NA, Shukur MF (2018) Biopolymeric electrolyte based on glycerolized methyl cellulose with NH4Br as proton source and potential application in EDLC. Ionics 24(6):1651–1662

    CAS  Google Scholar 

  15. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor. Electrochim Acta 136:204–216

    CAS  Google Scholar 

  16. Chinnam PR, Zhang H, Wunder SL (2015) Blends of pegylated polyoctahedralsilsesquioxanes (POSS-PEG) and methyl cellulose as solid polymer electrolytes for lithium batteries. Electrochim Acta 170:191–201

    CAS  Google Scholar 

  17. Tuhania P, Singh PK, Bhattacharya B, Dhapola PS, Yadav S, Shukla PK, Gupta M (2018) PVDF-HFP and 1-ethyl-3-methylimidazolium thiocyanate–doped polymer electrolyte for efficient supercapacitors. High Perform Polym 30(8):911–917

    CAS  Google Scholar 

  18. Gupta S, Singh PK, Bhattacharya B (2018) Low-viscosity ionic liquid–doped solid polymer electrolytes: electrical, dielectric, and ion transport studies. High Perform Polym 30(8):986–992

    CAS  Google Scholar 

  19. Winie T, Ramesh S, Arof AK (2009) Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Phys B Condens Matter 404(21):4308–4311

    CAS  Google Scholar 

  20. Yang K, Chi Q, Wang X, Jiang Y, Li F, Xue B (2019) The role of halloy site on crystallinity, ion conductivity, thermal and mechanical properties of poly (ethylene-oxide)/halloysite nanocomposites. J Polym Res 26(6):138

    Google Scholar 

  21. Dhatarwal P, Sengwa R (2019) Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites. J Polym Res 26(8):196

    Google Scholar 

  22. Ramesh S, Leen KH, Kumutha K, Arof A (2007) FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta A Mol Biomol Spectrosc 66(4–5):1237–1242

    CAS  PubMed  Google Scholar 

  23. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177(26–32):2679–2682

    CAS  Google Scholar 

  24. Morsi MA, El-Khodary SA, Rajeh A (2018) Enhancement of the optical, thermal and electrical properties of PEO/PAM: Li polymer electrolyte films doped with Ag nanoparticles. Phys B Condens Matter 539:88–96

    CAS  Google Scholar 

  25. Shafeeq VH, Unnikrishnan G (2020) Experimental and theoretical evaluation of mechanical, thermal and morphological features of EVA-millable polyurethane blends. J Polym Res 27(3):53

    CAS  Google Scholar 

  26. Sivadevi S, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Nithya H, Iwai Y, Kawamura J (2015) Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 21(4):1017–1029

    CAS  Google Scholar 

  27. Varnell DF, Coleman MM (1981) FT ir studies of polymer blends: V. further observations on polyester-poly (vinyl chloride) blends. Polym 22(10):1324–1328

    CAS  Google Scholar 

  28. Garton A, Aubin M, Prud'Homme RE (1983) FTIR of polycaprolactone/poly (vinylidene chloride-co-acrylonitrile) miscible blends. J Polym Sci, Polym Lett Ed 21(1):45–47

    CAS  Google Scholar 

  29. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55(4):1475–1482

    CAS  Google Scholar 

  30. Subramania A, Sundaram NTK, Kumar GV, Vasudevan T (2006) New polymer electrolyte based on (PVA–PAN) blend for Li-ion battery applications. Ionics 12(2):175–178

    CAS  Google Scholar 

  31. Saadiah MA, Zhang D, Nagao Y, Muzakir SK, Samsudin AS (2019) Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J Non-Cryst Solids 511:201–211

    CAS  Google Scholar 

  32. Ahmad NH, Isa MIN (2016) Ionic conductivity and electrical properties of carboxymethyl cellulose-NH4Cl solid polymer electrolytes. JESTEC:839–847

  33. Ramlli MA, Isa MIN (2015) Solid biopolymer electrolytes based Carboxymethyl cellulose doped with ammonium fluoride: ionic transport and conduction mechanism. Polymers from Renewable Resources 6(2):55

    Google Scholar 

  34. He Z, Xia Z, Hu J, Ma L, Li Y (2019) Thermodynamic properties of polyvinyl alcohol binder of electrically controlled solid propellant. J Polym Res 26(9):219

    CAS  Google Scholar 

  35. Rajeswari N, Selvasekarapandian S, Karthikeyan S, Prabu M, Hirankumar G, Nithya H, Sanjeeviraja C (2011) Conductivity and dielectric properties of polyvinyl alcohol–polyvinylpyrrolidone poly blend film using non-aqueous medium. J Non-Cryst Solids 357(22–23):3751–3756

    CAS  Google Scholar 

  36. Hema M, Selvasekerapandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Phys B Condens Matter 403(17):2740–2747

    CAS  Google Scholar 

  37. Mortimer RJ, Rosseinsky DR, Monk PM (2015) Electrochromic materials and devices. John Wiley & Sons,

  38. Saadiah MA, Samsudin AS Electrical study on Carboxymethyl Cellulose-Polyvinyl alcohol based bio-polymer blend electrolytes. In: IOP Conference Series: Materials Science and Engineering, 2018. vol 1. IOP Publishing, p 012045

  39. Liew C-W, Ramesh S, Arof AK (2016) Enhanced capacitance of EDLCs (electrical double layer capacitors) based on ionic liquid-added polymer electrolytes. Energy 109:546–556

    CAS  Google Scholar 

  40. Shukur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chitosan–PEO blend and application in electrochemical devices. Opt Mater 35(10):1834–1841

    CAS  Google Scholar 

  41. Ramesh S, Liew C-W, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J Non-Cryst Solids 357(10):2132–2138

    CAS  Google Scholar 

  42. Hema M, Selvasekerapandian S, Hirankumar G, Sakunthala A, Arunkumar D, Nithya H (2009) Structural and thermal studies of PVA: NH4I. J Phys Chem Solids 70(7):1098–1103

    CAS  Google Scholar 

  43. Ramesh S, Liew C-W, Morris E, Durairaj R (2010) Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes. Thermochim Acta 511(1–2):140–146

    CAS  Google Scholar 

  44. Leones R, Reis PM, Sabadini RC, Esperança JMSS, Pawlicka A, Silva MM (2020) Chitosan polymer electrolytes doped with a dysprosium ionic liquid. J Polym Res 27(3):45

    CAS  Google Scholar 

  45. Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Phys B Condens Matter 373(1):23–27

    CAS  Google Scholar 

  46. Abutalib M (2019) Effect of zinc oxide nanorods on the structural, thermal, dielectric and electrical properties of polyvinyl alcohol/carboxymethyle cellulose composites. Phys B Condens Matter 557:108–116

    CAS  Google Scholar 

  47. Osman Z, Ghazali MM, Othman L, Isa KM (2012) AC ionic conductivity and DC polarization method of lithium ion transport in PMMA–LiBF4 gel polymer electrolytes. Results in Physics 2:1–4

    CAS  Google Scholar 

  48. Siekierski M, Wieczorek W, Przyłuski J (1998) AC conductivity studies of composite polymeric electrolytes. Electrochim Acta 43(10–11):1339–1342

    CAS  Google Scholar 

  49. Elliott SR (1994) Frequency-dependent conductivity in ionically and electronically conducting amorphous solids. Solid State Ionics 70:27–40

    Google Scholar 

  50. Ramly K, Isa MIN, Khiar ASA (2011) Conductivity and dielectric behaviour studies of starch/PEO+ x wt-% NH4NO3 polymer electrolyte. Mater Res Innov 15:82–85

    Google Scholar 

  51. Noor NAM, Isa MIN (2015) Ionic conductivity and dielectric properties of CMC doped NH4SCN solid biopolymer electrolytes. Adv Mater Res 1107:230

    Google Scholar 

  52. Rani MSA, Dzulkurnain NA, Ahmad A, Mohamed NS (2015) Conductivity and dielectric behavior studies of carboxymethyl cellulose from kenaf bast fiber incorporated with ammonium acetate-BMATFSI biopolymer electrolytes. Int J Polym Anal Charact 20(3):250–260

    CAS  Google Scholar 

  53. Samsudin AS, Isa MIN, Mohamad N (2011) New types of biopolymer electrolytes: ionic conductivity study on CMC doped with NH4Br. J Curr Eng Res 1(1):7–11

    Google Scholar 

  54. Chai MN, Isa MIN (2013) Electrical characterization and ionic transport properties of carboxyl methylcellulose-oleic acid solid polymer electrolytes. Int J Polym Anal Charact 18(4):280–286

    CAS  Google Scholar 

  55. Chai MN, Isa MIN (2012) Investigation on the conduction mechanism of carboxyl methylcellulose-oleic acid natural solid polymer electrolyte. Int J Adv Technol Eng Res 2(6):36–39

    Google Scholar 

  56. Schantz S, Torell LM (1993) Evidence of dissolved ions and ion pairs in dilute poly (propylene oxide)-salt solutions. Solid State Ionics 60(1–3):47–53

    CAS  Google Scholar 

  57. Mazuki NF, Fuzlin AF, Saadiah MA, Samsudin AS (2019) An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system. Ionics 25(6):2657–2667

    CAS  Google Scholar 

  58. Alves R, Sentanin F, Sabadini R, Pawlicka A, Silva MM (2017) Innovative electrolytes based on chitosan and thulium for solid state applications: synthesis, structural, and thermal characterization. J Electroanal Chem 788:156–164

    CAS  Google Scholar 

  59. Azlan AL, Isa MIN (2011) Proton conducting biopolymer electrolytes based on tapioca starch-NH4NO3. ECS J Solid State Sc 18(1):124–129

    Google Scholar 

  60. Kulshrestha N, Chatterjee B, Gupta P (2014) Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate. Mater Sci Eng B 184:49–57

    CAS  Google Scholar 

  61. Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152:291–294

    Google Scholar 

  62. Samsudin AS, Isa MIN (2012) Structural and ionic transport study on CMC doped NH4Br: a new types of biopolymer electrolytes. J Appl Sci 12(2):174–179

    CAS  Google Scholar 

  63. Kadir MFZ, Arof AK (2011) Application of PVA–chitosan blend polymer electrolyte membrane in electrical double layer capacitor. Mater Res Innov 15(sup2):217–220

    Google Scholar 

  64. Yusof YM, Illias HA, Kadir MFZ (2014) Incorporation of NH4Br in PVA-chitosan blend-based polymer electrolyte and its effect on the conductivity and other electrical properties. Ionics 20(9):1235–1245

    CAS  Google Scholar 

  65. Ng LS, Mohamad AA (2008) Effect of temperature on the performance of proton batteries based on chitosan–NH4NO3–EC membrane. J Membr Sci 325(2):653–657

    CAS  Google Scholar 

  66. Pratap R, Singh B, Chandra S (2006) Polymeric rechargeable solid-state proton battery. J Power Sources 161(1):702–706

    CAS  Google Scholar 

  67. Rauh RD (1999) Electrochromic windows: an overview. Electrochim Acta 44(18):3165–3176

    CAS  Google Scholar 

  68. Shukur MF, Kadir MFZ (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165

    CAS  Google Scholar 

  69. Poy SY, Bashir S, Omar FS, Saidi NM, Farhana NK, Sundararajan V, Ramesh K, Ramesh S (2020) Poly (1-vinylpyrrolidone-co-vinyl acetate)(PVP-co-VAc) based gel polymer electrolytes for electric double layer capacitors (EDLC). J Polym Res 27(3):50

    CAS  Google Scholar 

  70. Liew C-W, Ramesh S, Arof A (2014) Good prospect of ionic liquid based-poly (vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrog Energy 39(6):2953–2963

    CAS  Google Scholar 

  71. Aziz SB, Abdulwahid RT, Hamsan MH, Brza MA, Abdullah RM, Kadir MF, Muzakir SK (2019) Structural, impedance, and EDLC characteristics of proton conducting chitosan-based polymer blend electrolytes with high electrochemical stability. Molecules 24(19):3508

    CAS  Google Scholar 

  72. Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrical double layer capacitor using poly (methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of Mata kucing (Dimocarpus longan) fruit. Electrochim Acta 74:39–45

    CAS  Google Scholar 

  73. Ates M, Bayrak Y, Ozkan H, Yoruk O, Yildirim M, Kuzgun O (2019) Synthesis of rGO/TiO2/PEDOT nanocomposites, supercapacitor device performances and equivalent electrical circuit models. J Polym Res 26(2):49

    Google Scholar 

  74. Hamsan MH, Shukur MF, Kadir MFZ (2017) NH4NO3 as charge carrier contributor in glycerolized potato starch-methyl cellulose blend-based polymer electrolyte and the application in electrochemical double-layer capacitor. Ionics 23(12):3429–3453

    CAS  Google Scholar 

  75. Chen W, Beidaghi M, Penmatsa V, Bechtold K, Kumari L, Li W, Wang C (2010) Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. IEEE Trans Nanotechnol 9(6):734–740

    Google Scholar 

  76. Nadiah NS, Omar FS, Numan A, Mahipal YK, Ramesh S, Ramesh K (2017) Influence of acrylic acid on ethylene carbonate/dimethyl carbonate based liquid electrolyte and its supercapacitor application. Int J Hydrog Energy 42(52):30683–30690

    CAS  Google Scholar 

  77. Liew C-W, Ramesh S, Arof AK (2016) Investigation of ionic liquid-doped ion conducting polymer electrolytes for carbon-based electric double layer capacitors (EDLCs). Mater Design 92:829–835

    CAS  Google Scholar 

  78. Francis KA, Liew C-W, Ramesh S, Ramesh K (2016) Ionic liquid enhanced magnesium-based polymer electrolytes for electrical double-layer capacitors. Ionics 22(6):919–925

    CAS  Google Scholar 

  79. Yang C-C, Hsu S-T, Chien W-C (2005) All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes. J Power Sources 152:303–310

    CAS  Google Scholar 

  80. Shukur MF, Ithnin R, Kadir MFZ (2014) Protonic transport analysis of starch-chitosan blend based electrolytes and application in electrochemical device. Mol Cryst Liq Cryst 603(1):52–65

    CAS  Google Scholar 

  81. Majid SR (2007) High molecular weight chitosan as polymer electrolyte for electrochemical devices. Jabatan Fizik, Fakulti Sains, Universiti Malaya,

  82. Shuhaimi NEA, Teo LP, Woo HJ, Majid SR, Arof AK (2012) Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym Bull 69(7):807–826

    CAS  Google Scholar 

  83. Johari NA, Kudin TIT, Ali AMM, Winie T, Yahya MZA (2009) Studies on cellulose acetate-based gel polymer electrolytes for proton batteries. Mater Res Innov 13(3):232–234

    CAS  Google Scholar 

  84. Samsudin AS, Isa MIN (2015) Conductivity study on plasticized solid bio-electrolytes CMC-NH4Br and application in solid-state proton batteries. Jurnal Teknologi 78(6–5):43–48

    Google Scholar 

  85. Ambika C, Karuppasamy K, Vikraman D, Lee JY, Regu T, Raj TAB, Prasanna K, Kim H-S (2018) Effect of dimethyl carbonate (DMC) on the electrochemical and cycling properties of solid polymer electrolytes (PVP-MSA) and its application for proton batteries. Solid State Ionics 321:106–114

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MOHE for FRGS (RDU1901114) and UMP for the internal grant (RDU 190389), Faculty of Industrial Sciences and Technology, University Malaysia Pahang, for the help and support given for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Salihin Samsudin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazuki, N., Abdul Majeed, A.P.P. & Samsudin, A.S. Study on electrochemical properties of CMC-PVA doped NH4Br based solid polymer electrolytes system as application for EDLC. J Polym Res 27, 135 (2020). https://doi.org/10.1007/s10965-020-02078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02078-5

Keywords

Navigation