Skip to main content
Log in

Synthesis and characterization of post-metallocene titanium complexes of bidentate dicarboxylic acids and studies on the effect of ring size on their polymerization activity at room temperature in aqueous emulsion

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The past decade has witnessed a remarkable growth in the polymerization reactions that are catalyzed by postmetallocene complexes. In this report, three early transition metal catalysts based on TiCl4 and aliphatic linear saturated dicarboxylic acids (Oxalic, Malonic and succinic acid) have been synthesized and characterized and their catalytic activity in emulsion polymerization have been studied. Upon treatment with NaBPh4, the complexes have been found to remain robust and highly active for the polymerization of Methylmethacrylate even at very low co-catalyst /catalyst ratios. Moreover, the polymers synthesized have been found to be isotactic rich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mülhaupt R (2003) Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler's catalysts. Macromol Chem Phys 204(2):289–327

    Article  Google Scholar 

  2. Sinn H, Kaminsky W (1980) Ziegler-Natta catalysis. Adv Organomet Chem 18. Elsevier:99–149

    Article  CAS  Google Scholar 

  3. Shamiri A, Chakrabarti MH, Jahan S, Hussain MA, Kaminsky W, Aravind PV, Yehye WA (2014) The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials 7(7):5069–5108

    Article  CAS  Google Scholar 

  4. Bajgur CS, Sivaram S (2000) The evolution of new generationsingle-site'Ziegler-Natta polymerization catalysts. Curr Sci-Bangalore 78(11):1325–1335

    CAS  Google Scholar 

  5. Stukalov DV, Zilberberg IL, Zakharov VA (2009) Surface species of titanium (IV) and titanium (III) in MgCl2-supported Ziegler− Natta catalysts. A periodic density functional theory study. Macromolecules 42(21):8165–8171

    Article  CAS  Google Scholar 

  6. Kaminsky W (2016) Production of polyolefins by metallocene catalysts and their recycling by pyrolysis. Macromol Symp 1. Wiley Online Library:10–22

    Article  Google Scholar 

  7. Kaminsky W (2017) The discovery and evolution of metallocene-based olefin polymerization catalysts. Rendiconti Lincei 28(1):87–95

    Article  Google Scholar 

  8. Wilkinson G, Birmingham JM (1954) Bis-cyclopentadienyl compounds of Ti, Zr, V, Nb and ta. J Am Chem Soc 76(17):4281–4284. https://doi.org/10.1021/ja01646a008

    Article  CAS  Google Scholar 

  9. Wilkinson G, Cotton F (1959) Cyclopentadienyl and arene metal compounds. Prog Inorg Chem:1–124

  10. Kaminsky W, Laban A (2001) Metallocene catalysis. Appl Catal A Gen 222(1–2):47–61

    Article  CAS  Google Scholar 

  11. De SK, Sharma K, Sharma C (2018) Synthesis and catalytic performance of a new post-metallocene titanium complex having asymmetric tetradentate [ONSO]-type amino acid-based chelating ligand for acrylate polymerization at room temperature in aqueous emulsion. Colloid Polym Sci:1–13

  12. Gauvin R, Arbaoui A, Gautier E, Mortreux A, Berrier E, Nowogrocki G (2009) Efficient synthesis and structural characterization of a post-metallocene α-olefin polymerization catalyst. Inorg Chim Acta 362(1):277–280

    Article  CAS  Google Scholar 

  13. Matsugi T, Fujita T (2008) High-performance olefin polymerization catalysts discovered on the basis of a new catalyst design concept. Chem Soc Rev 37(6):1264–1277

    Article  CAS  Google Scholar 

  14. Suzuki Y, Tanaka H, Oshiki T, Takai K, Fujita T (2006) Titanium and zirconium complexes with non-Salicylaldimine-type imine–Phenoxy chelate ligands: syntheses, structures, and ethylene-polymerization behavior. Chem Asian J 1(6):878–887

    Article  CAS  Google Scholar 

  15. Sharma K, Lunawat G, De SK (2016) Environmentally benign stereoselective polymerizations of polar as well as nonpolar olefins by a new postmetallocene Ti (IV) salicylate complex at ambient temperature in aqueous emulsion. J Polym Res 23(3):41

    Article  Google Scholar 

  16. Ciancaleoni G, Fraldi N, Budzelaar PH, Busico V, Macchioni A (2011) Structure and dynamics in solution of bis (phenoxy-amine) zirconium catalysts for olefin polymerization. Organometallics 30(11):3096–3105

    Article  CAS  Google Scholar 

  17. Ishii A, Ikuma K, Nakata N, Nakamura K, Kuribayashi H, Takaoki K (2017) Zirconium and hafnium complexes with cycloheptane-or cyclononane-fused [OSSO]-type bis (phenolato) ligands: synthesis, structure, and highly active 1-hexene polymerization and ring-size effects of fused cycloalkanes on the activity. Organometallics 36(20):3954–3966

    Article  CAS  Google Scholar 

  18. Liu C-C, Liu Q, Yiu S-M, Chan MC (2019) Group 4 post-Metallocenes supported by [OCH2N, C (σ-aryl)] auxiliaries bearing a seven-membered Metallacycle: synthesis, characterization, and catalysts for olefin polymerization. Organometallics 38(15):2963–2971

    Article  CAS  Google Scholar 

  19. Gueta-Neyroud T, Tumanskii B, Botoshansky M, Eisen MS (2007) Synthesis, characterization and catalytic activity of the complex titanium bis (dimethylmalonate)–bis (diethylamido) in the polymerization of propylene. J Organomet Chem 692(5):927–939

    Article  CAS  Google Scholar 

  20. Pärssinen A, Elo P, Klinga M, Leskelä M, Repo T (2006) Synthesis of titanium complexes bearing two mono anionic malonic acid ester based ligands and their use as catalyst precursors in ethene polymerization. Inorg Chem Commun 9(8):859–861

    Article  Google Scholar 

  21. Elo P, Pärssinen A, Nieger M, Leskelä M, Repo T (2009) Synthesis, ethylene polymerization and dynamic features of titanium and zirconium complexes bearing chelating malonate-based enaminoketonato ligands. J Organomet Chem 694(18):2927–2933

    Article  CAS  Google Scholar 

  22. Zhu S, Yan D, Zhang G, Li M (2000) Controlled/“living” radical polymerization of styrene catalyzed by FeCl2/succinic acid. Macromol Chem Phys 201(18):2666–2669

    Article  CAS  Google Scholar 

  23. Sharma K, De SK (2016) A post-metallocene titanium (IV) complex bearing asymmetric tetradentate [ONNO]-type amino acid-based ligand and its activity toward polymerization of polar monomers at room temperature in aqueous emulsion. Colloid Polym Sci 294(12):2051–2070

    Article  CAS  Google Scholar 

  24. Mecking S, Held A, Bauers FM (2002) Aqueous catalytic polymerization of olefins. Angew Chem Int Ed 41(4):544–561

    Article  CAS  Google Scholar 

  25. Agrawal D, Shrivastava Y, De SK, Singh PK (2019) Synthesis of post-metallocene catalyst and study of its olefin polymerization activity at room temperature in aqueous solution followed by prediction of yield. J Polym Res 26(7):167–116. https://doi.org/10.1007/s10965-019-1825-2

    Article  CAS  Google Scholar 

  26. De SK, Bhattacharjee M (2013) Titanium (IV) nonmetallocene complex catalyzed aqueous homopolymerization and copolymerization of styrene and methyl methacrylate: an environmentally friendly approach to ultrahigh molecular weight polymer nanoparticles. J Polym Sci A Polym Chem 51(7):1540–1549

    Article  CAS  Google Scholar 

  27. Bauers FM, Chowdhry MM, Mecking S (2003) Catalytic polymerization of ethylene in aqueous emulsion with a simple in situ catalyst. Macromolecules 36(18):6711–6715

    Article  CAS  Google Scholar 

  28. Pizarro AM, Habtemariam A, Sadler PJ (2010) Activation mechanisms for organometallic anticancer complexes. In: Medicinal Organometallic Chemistry. Springer, pp 21–56

  29. Peacock AF, Sadler PJ (2008) Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents. Chem Asian J 3(11):1890–1899

    Article  CAS  Google Scholar 

  30. Chen X, Zhou L (2010) The hydrolysis chemistry of anticancer drug titanocene dichloride: an insight from theoretical study. J Mol Struct THEOCHEM 940(1–3):45–49

    Article  CAS  Google Scholar 

  31. Buettner KM, Valentine AM (2011) Bioinorganic chemistry of titanium. Chem Rev 112(3):1863–1881

    Article  Google Scholar 

  32. Kaminsky W, Funck A, Hähnsen H (2009) New application for metallocene catalysts in olefin polymerization. Dalton Trans 41:8803–8810

    Article  Google Scholar 

  33. Suzuki Y, Inoue Y, Tanaka H, Fujita T (2004) Phenoxy–ether ligated Ti complexes for the polymerization of ethylene. Macromol Rapid Commun 25(3):493–497

    Article  CAS  Google Scholar 

  34. Isobe Y, Yamada K, Nakano T, Okamoto Y (1999) Stereospecific free-radical polymerization of methacrylates using fluoroalcohols as solvents. Macromolecules 32(18):5979–5981

    Article  CAS  Google Scholar 

  35. Biroš J, Larina T, Trekoval J, Pouchlý J (1982) Dependence of the glass transition temperature of poly (methyl methacrylates) on their tacticity. Colloid Polym Sci 260(1):27–30

    Article  Google Scholar 

Download references

Funding

This study was funded by Jaypee University of Engineering and Technology, Guna, 473,226, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip K. De.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, D., De, S.K. & Singh, P.K. Synthesis and characterization of post-metallocene titanium complexes of bidentate dicarboxylic acids and studies on the effect of ring size on their polymerization activity at room temperature in aqueous emulsion. J Polym Res 27, 99 (2020). https://doi.org/10.1007/s10965-020-02067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02067-8

Keywords

Navigation