Skip to main content
Log in

The thiol group modified multi-wall carbon nanotubes to enhance the dielectric properties of polystyrene

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The researches on how to prepare the polymer composites with high dielectric constant (high-k) and low dielectric loss were important for the rapid development of electronic industry. In this paper, by using silane coupling agent, the multi-wall carbon nanotubes (MWCNTs) could graft the thiol groups with high chain transfer constant on the surface, which made the polystyrene (PS) chain coat more efficiently on the surface of MWCNTs to form the core-shell structure. 1H NMR, TGA and TEM results, showed polystyrene were grafted on the surface of MWCNTs. The grafted PS could reduce the dielectric loss of composite materials and promote the dispersion of the coating MWCNTs in the matrix. In addition, the insulating layer effectively improved the interaction between the MWCNTs and PS matrix, which strengthened the binding force between the filler and matrix, resulting in the increase of the thermal stability of the PS composites. In terms of AC conductivity, the insulating layer could effectively prevent the contact between adjacent MWCNTs from forming a complete conducting network, which inhibited the generation of leakage current. Therefore, compared with untreated multi-wall carbon nanotubes/polystyrene composites, the above composites had excellent dielectric properties with high dielectric constant (214) and low dielectric loss (2.23) at low CNTs mass fraction (4 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rahaman M, Thomas SP, Hussein IA, De S (2013) Dependence of electrical properties of polyethylene nanocomposites on aspect ratio of carbon nanotubes. Polym Compos 34(4):494–499

    Article  CAS  Google Scholar 

  2. Brosseau C (2011) Emerging technologies of plastic carbon nanoelectronics: a review. Surf Coat Technol 206(4):753–758

    Article  CAS  Google Scholar 

  3. Wilson SA, Jourdain RP, Zhang Q, Dorey RA, Bowen CR, Willander M, Wahab QU, Al-hilli SM, Nur O, Quandt E (2007) New materials for micro-scale sensors and actuators: an engineering review. Mater. Sci. Eng.: R: Reports 56(1–6):1–129

    Article  Google Scholar 

  4. Ortiz RP, Facchetti A, Marks TJ (2009) High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev 110(1):205–239

    Article  Google Scholar 

  5. Balberg I, Azulay D, Toker D, Millo O (2004) Percolation and tunneling in composite materials. Int J Mod Phys B 18(15):2091–2121

    Article  CAS  Google Scholar 

  6. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19(6):852–857

    Article  CAS  Google Scholar 

  7. Wang L, Dang Z-M (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87(4):042903

    Article  Google Scholar 

  8. Xie L, Huang X, Huang Y, Ke Y, Jiang P (2013) Core@double-Shell structured BaTiO3–polymer Nanocomposites with high dielectric constant and low dielectric loss for energy storage application. J Phys Chem C 117(44):22525–22537

    Article  CAS  Google Scholar 

  9. Xia W, Zhuo X, Fei W, Zhang Z (2012) Electrical energy density and dielectric properties of poly (vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO 3 nanocomposites. Ceram Int 38(2):1071–1075

    Article  CAS  Google Scholar 

  10. Nan CW, Shen Y, Jing M (2010) Physical properties of composites near percolation. Annu Rev Mater Sci 40(1):131–151

    Article  CAS  Google Scholar 

  11. Song Y, Noh TW, Lee SI, Gaines JR (1986) Experimental study of the three-dimensional ac conductivity and dielectric constant of a conductor-insulator composite near the percolation threshold. Phys. Rev. B: Condens. Matter 33(2):904

    Article  CAS  Google Scholar 

  12. Pötschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer 44(17):5023–5030

    Article  Google Scholar 

  13. Dang ZM, Yao SH, Xu HP (2007) Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites. Appl Phys Lett 90(1):150

    Google Scholar 

  14. Lee RS, Chen WH, Lin JH (2011) Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer 52(10):2180–2188

    Article  CAS  Google Scholar 

  15. Dong B, Su Y, Liu Y, Yuan J, Xu J, Zheng L (2011) Dispersion of carbon nanotubes by carbazole-tailed amphiphilic imidazolium ionic liquids in aqueous solutions. J Colloid Interface Sci 356(1):190–195

    Article  CAS  PubMed  Google Scholar 

  16. Gunasekaran S, Rajakumar K, Alagar M, Dharmendirakumar M (2014) Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites. J Polym Res 21(1):342

    Article  Google Scholar 

  17. Hatui G, Das CK (2013) Modification of CNT and its effect on thermo mechanical, morphological as well as rheological properties of polyether imide (PEI)/liquid crystalline polymer (LCP) blend system. J Polym Res 20(2):1–12

    Article  CAS  Google Scholar 

  18. Wu G-H, Liu S-Q, Wu X-Y, Ding X-M (2016) Influence of MWCNTs modified by silane coupling agent KH570 on the properties and structure of MWCNTs/PLA composite film. J Polym Res 23(8):155

    Article  Google Scholar 

  19. Xu W, Zhang Y, Yang G, Yu X, Liu J, Jiang Z (2017) ZnPc-MWCNT/sulfonated poly (ether ether ketone) composites for high-k and electrical energy storage applications. IEEE Trans Dielectr Electr Insul 24(2):720–726

    Article  CAS  Google Scholar 

  20. Zhang Y, Huo P, Wang J, Liu X, Rong C, Wang G (2013) Dielectric percolative composites with high dielectric constant and low dielectric loss based on sulfonated poly (aryl ether ketone) and a-MWCNTs coated with polyaniline. J Mater Chem C 1(25):4035–4041

    Article  CAS  Google Scholar 

  21. Su Y, Ren Y, Chen GX, Li Q (2016) Synthesis of high-k and low dielectric loss polymeric composites from crosslinked divinylbenzene coated carbon nanotubes. Polymer 100:179–187

    Article  CAS  Google Scholar 

  22. S-l L, Dou R, Shao Y, Yin B, Yang M-b (2016) Effect of the MWCNTs selective localization on the dielectric properties for PVDF/PS/HDPE ternary blends with in situ formed core–shell structure. RSC Adv 6(63):58493–58500

    Article  Google Scholar 

  23. Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly (styrene-acrylonitrile). Macromol Rapid Commun 30(6):423–429

    Article  PubMed  Google Scholar 

  24. Zhao X, Zhao J, Cao J-P, Wang D, Hu G-H, Chen F, Dang Z-M (2014) Effect of the selective localization of carbon nanotubes in polystyrene/poly (vinylidene fluoride) blends on their dielectric, thermal, and mechanical properties. Mater Des (1980-2015) 56:807–815

    Article  CAS  Google Scholar 

  25. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ. Sci. 4(4):1113–1132

    Article  CAS  Google Scholar 

  26. Zhang T, Huang W, Zhang N, Huang T, Yang J, Wang Y (2017) Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: high dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. Eur Polym J 94:196–207

    Article  CAS  Google Scholar 

  27. Basu S, Singhi M, Satapathy BK, Fahim M (2013) Dielectric, electrical, and rheological characterization of graphene-filled polystyrene nanocomposites. Polym Compos 34(12):2082–2093

    Article  CAS  Google Scholar 

  28. Yang K, Huang X, Xie L, Wu C, Jiang P, Tanaka T (2012) Core–shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Macromol Rapid Commun 33(22):1921–1926

    Article  CAS  PubMed  Google Scholar 

  29. Yang K, Huang X, Zhu M, Xie L, Tanaka T, Jiang P (2014) Combining RAFT polymerization and thiol–ene click reaction for core–shell structured polymer@ BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability. ACS Appl Mater Interfaces 6(3):1812–1822

    Article  CAS  PubMed  Google Scholar 

  30. Yang C, Lin Y, Nan C (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47(4):1096–1101

    Article  CAS  Google Scholar 

  31. Zhou F, Liu W, Chen M, Sun DC (2001) A novel way to prepare ultra-thin polymer films through surface radical chain-transfer reaction. Chem Commun 23(23):2446–2447

    Article  Google Scholar 

  32. Wang B, Liu L, Huang L, Chi L, Liang G, Li Y, Gu A (2015) Fabrication and origin of high- k carbon nanotube/epoxy composites with low dielectric loss through layer-by-layer casting technique. Carbon 85:28–37

    Article  CAS  Google Scholar 

  33. Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874

    Article  CAS  Google Scholar 

  34. Zhao Z, Zheng W, Yu W, Long B (2009) Electrical conductivity of poly (vinylidene fluoride)/carbon nanotube composites with a spherical substructure. Carbon 47(8):2118–2120

    Article  CAS  Google Scholar 

  35. Chao W, Huang X, Wu X, Yu J, Xie L, Jiang P (2012) TiO-nanorod decorated carbon nanotubes for high-permittivity and low-dielectric-loss polystyrene composites. Compos Sci Technol 72(4):521–527

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Jilin Provincial Science & Technology Department (20170203010GX) and the Education Department of Jilin Province (JJKH20170551KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Lv or Shulin Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Bi, Y., Song, S. et al. The thiol group modified multi-wall carbon nanotubes to enhance the dielectric properties of polystyrene. J Polym Res 27, 141 (2020). https://doi.org/10.1007/s10965-019-1926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1926-y

Keywords

Navigation