Skip to main content

Advertisement

Log in

Synthesis of polyaniline/MWCNTs by interfacial polymerization for superior hybrid supercapacitance performance

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyaniline/Multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite was prepared via liquid-liquid interfacial polymerization method. The morphology studies of the nanocomposite using SEM and TEM techniques confirmed the presence of PANI as aggregates along with MWCNTs and X-ray diffraction studies indicated the presence of graphitic planes of MWCNTs along with PANI in semi-crystalline emeraldine salt form. The PANI/MWCNTs nanocomposite electrode exhibited specific capacitance (Cs) of 1551 F/g at a scan rate of 2 mV/s in aqueous 1 M H2SO4 in a potential window of 0–1.2 V. The material exhibited good cycle life with 95% capacitance retention in a life cycle test conducted at 5 A/g for 1000 cycles. Further, an asymmetric supercapacitor device (ASD) was fabricated using PANI/MWCNTs as positive and activated carbon as negative electrodes in aqueous 1 M H2SO4. The ASD exhibited a Cs of 142 F/g at a scan rate of 5 mV/s in a wide potential range of 0–1.6 V. The device offered high energy and power densities of 29 Wh/Kg and 7.3 kW/Kg respectively and also demonstrated an excellent cyclic stability by retaining 97% of its initial capacitance after 5000 cycles at high current density of 20 A/g.

Schematic representation of design of asymmetric supercapacitor device, its cycle performance and Ragone plot

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He X, Bo G, Wang G, Wei J, Zhao C (2013) A new nanocomposite: carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochim Acta 111:210–215

    Article  CAS  Google Scholar 

  2. Lee S-Y, Kim J-I, Park S-J (2014) Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy 78:298–303

    Article  CAS  Google Scholar 

  3. Gao Z, Yang W, Wanga J, Yan H, Yao Y, Ma J, Wang B, Zhang M, Liu L (2013) Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochim Acta 91:185–194

    Article  CAS  Google Scholar 

  4. Dhibar S, Bhattacharya P, Hatui G, Das CK (2015) Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials. J Alloys Compd 625:64–75

    Article  CAS  Google Scholar 

  5. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors—progress and prospects. Electrochim Acta 101:109–129

    Article  CAS  Google Scholar 

  6. Iranagha SA, Eskandarian L, Mohammadi R (2013) Synthesis of MnO2-polyaniline nanofiber composites to produce high conductive polymer. Synth Met 172:49–53

    Article  CAS  Google Scholar 

  7. Jin Y, Huang S, Zhang M, Jia M (2013) Preparation of sulfonated graphene–polyaniline nanofiber composites by oil/water interfacial polymerization and their application for supercapacitors. Synth Met 168:58–64

    Article  CAS  Google Scholar 

  8. Yang Y, Hao Y, Yuan J, Li N, Xia F (2014) In situ preparation of caterpillar-like polyaniline/ carbon nanotube hybrids with core shell structure for high performance supercapacitors. Carbon 78:279–287

    Article  CAS  Google Scholar 

  9. Yi Z, Qin Z-Y, Li L, Zhang Y, Wei Y-L, Wang L-F, Zhu M-F (2010) Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochim Acta 55(12):3904–3908

    Article  CAS  Google Scholar 

  10. Oueiny C, Berlioz S, Perrin F¸ o-X (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39(4):707–748

    Article  CAS  Google Scholar 

  11. Ramana GV, Srikanth VVSS, Padya B, Jain PK (2014) Carbon nanotube–polyaniline nanotube Core-Shell structures for electrochemical applications. Eur Polym J 57:137–142

    Article  CAS  Google Scholar 

  12. Chen Y, Xu Y, Chen L, Li P, Zhu S, Shen S (2015) Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes. Energy 88:377–384

    Article  CAS  Google Scholar 

  13. Chaitra K, Nagaraju N, Nagaraju K (2015) Nanocomposite of hexagonal β-Ni(OH)2/multiwalled carbon nanotubes as high performance electrode for hybrid supercapacitors. Mater Chem Phys 164:98–107

    Article  CAS  Google Scholar 

  14. Chaitra K, Sivaraman P, Vinny RT, Bhatta UM, Nagaraju N, Kathyayini N (2016) High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: design of an asymmetric supercapacitor with excellent cycle life. J Energy Chem 25:627–635

    Article  Google Scholar 

  15. Vinny RT, Chaitra K, Venkatesh K, Nagaraju N, Kathyayini N (2016) An excellent cycle performance of asymmetric supercapacitor based on bristles like α-MnO2 nanoparticles grown on multiwalled carbon nanotubes. J Power Sources 309:212–220

    Article  CAS  Google Scholar 

  16. Chaitra K, Thomas VR, Santhosh MS, Srivastava C, Nagaraju N, Kathyayini H (2015) A comparative study on electrochemical behaviour of Co3O4 and Co3O4-MWCNTs for supercapacitors. J Sci Ind Res 74:202–208

    CAS  Google Scholar 

  17. Dhibar S, Das CK (2014) Silver nanoparticles decorated polyaniline/multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode. Ind Eng Chem Res 53(9):3495–3508

    Article  CAS  Google Scholar 

  18. Lin H, Li L, Ren J, Cai Z, Qiu L, Yang Z, Peng H (2013) Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci Rep 3:1–6

    CAS  Google Scholar 

  19. Otrokhov G, Pankratov D, Shumakovich G, Khlupova M, Zeifman Y, Vasil’eva I, Morozova O, Yaropolov A (2014) Enzymatic synthesis of polyaniline/multi-walled carbon nanotubecomposite with core shell structure and its electrochemicalcharacterization for supercapacitor application. Electrochim Acta 123:151–157

    Article  CAS  Google Scholar 

  20. Fathi M, Saghafi M, Mahboubi F, Mohajerzadeh S (2014) Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors. Synth Met 198:345–356

    Article  CAS  Google Scholar 

  21. Sharma AK, Sharma Y, Malhotra R, Sharma JK (2012) Solvent tuned PANI-CNT composites as advanced electrode materials for supercapacitor application. Adv Mat Lett 3:82–86

    Article  CAS  Google Scholar 

  22. Guo F, Mi H, Zhou J, Zhao Z, Qiu J (2015) Hybrid pseudocapacitor materials from polyaniline@multi-walled carbon nanotube with ultrafine nanofiber-assembled network shell. Carbon 95:323–329

    Article  CAS  Google Scholar 

  23. Zhu J, Chen M, Qu H, Zhang X, Wei H, Luo Z, Colorado HA, Wei S, Guo Z (2012). Polymer 53:5953–5964

    Article  CAS  Google Scholar 

  24. Bora C, Kalita A, Das D, Dolui SK, Mukhopadhyay PK (2013) Preparation of polyaniline/nickel oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their electrical, electrochemical and magnetic properties. Polym Int 63:445–452

    Article  CAS  Google Scholar 

  25. Dong B, He B-L, Xu C-L, Li H-L (2007) Preparation and electrochemical characterization of polyaniline/ multi-walled carbon nanotubes composites for supercapacitor. Mater Sci Eng B 143:7–13

    Article  CAS  Google Scholar 

  26. Chang C-M, Weng C-J, Chien C-M, Chuang T-L, Lee T-Y, Yeh J-M, Wei Y (2013) Polyaniline/carbon nanotube nanocomposite electrodes with biomimetic hierarchical structure for supercapacitors. J Mater Chem A 1(46):14719–14728

    Article  CAS  Google Scholar 

  27. Zhu Y, Liu E, Luo Z, Tiantian H, Liu T, Li Z, Zhao Q (2014) A hydroquinone redox electrolyte for polyaniline/SnO2 supercapacitors. Electrochim Acta 118:106–111

    Article  CAS  Google Scholar 

  28. Wenling W, Li Y, Yang L, Ma Y, Yan X (2014) Preparation and characterization of coaxial multiwalled carbonnanotubes/polyaniline tubular nanocomposites for electrochemical energy storage in the presence of sodium alginate. Synth Met 193:48–57

    Article  CAS  Google Scholar 

  29. Yang C, Li D (2015) Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline. Mater Lett 155:78–81

    Article  CAS  Google Scholar 

  30. Wang Q, Qian X, Wang S, Zhou W, Guo H, Wu X, Li J, Wang X (2015) Conductive polyaniline composite films from aqueous dispersion: performance enhancement by multi-walled carbon nanotube. Synth Met 199:1–7

    Article  CAS  Google Scholar 

  31. Sobha AP, Narayanankutty SK (2015) DC conductivity retention of functionalised multiwalled carbon nano- tube/polyaniline composites. Mater Sci Semicond Process 39:764–770

    Article  CAS  Google Scholar 

  32. Sarker AK, Hong J-D (2013) Electrochemical reduction of ultrathin graphene oxide/polyaniline films for supercapacitor electrodes with a high specific capacitance. Colloids Surf A: Physicochem Eng Aspects 436:967–974

    Article  CAS  Google Scholar 

  33. Tang W, Peng L, Yuan C, Wang J, Mo S, Zhao C, Yu Y, Min Y, Epstein AJ (2015) Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synth Met 202:140–146

    Article  CAS  Google Scholar 

  34. Potphode DD, Sivaraman P, Mishra SP, Patri M (2015) Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors. Electrochim Acta 155:402–410

    Article  CAS  Google Scholar 

  35. Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171:1062–1068

    Article  CAS  Google Scholar 

  36. Seyed Dorraji MS, Ahadzadeh I, Rasoulifard MH (2014) Chitosan/polyaniline/ MWCNT nanocomposite fibers as an electrode material for electrical double layer capacitors. Int J Hydrog Energy 39(17):9350–9355

    Article  CAS  Google Scholar 

  37. Yan J, Wei T, Fana Z, Qianb W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195(9):3041–3045

    Article  CAS  Google Scholar 

  38. Bavio MA, Acosta GG, Kessler T (2014) Polyaniline and polyaniline-carbon black nanostructures as electrochemical capacitor electrode materials. Int J Hydrog Energy 39(16):8582–8589

    Article  CAS  Google Scholar 

  39. Zenan Y, Innis MM, Calderon J, Seal S, Zhain L, Thomas J (2015) Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors. Nano Energy 11:611–620

    Article  CAS  Google Scholar 

  40. An N, An Y, Hu Z, Zhang Y, Yang Y, Lei Z (2015) Graphene hydrogels non-covalently functionalized with alizarin: an ideal electrode material for symmetric supercapacitors. RCS. Advances 10(44):1–34

    Google Scholar 

  41. Hao M, Chen Y, Xiong W, Zhang L, Wu L, Fu Y, Mei T, Wang J, Li J, Wang X (2016) Coherent polyaniline/graphene oxides/multi-walled carbon nanotubes ternary composites for asymmetric supercapacitors. Electrochim Acta 191:165–172

    Article  CAS  Google Scholar 

  42. Cheng Q, Tang J, Shinya N, Qin L-C (2013) Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J Power Sources 241:423–428

    Article  CAS  Google Scholar 

  43. Shen J, Yang C, Li X, Wang G (2013) High-performance asymmetric supercapacitor sased on nano-architectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Inter 35:1–35

    Google Scholar 

Download references

Acknowledgements

The authors thank NRB- Naval Research Board for the financial support given for this research work. Project Number: NRB-290/MAT/12-13. Authors thank Dr. Krishna Venkatesh, Director, Centre for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology Dr. M. Krishna, Director, CMRTU, RVCE for their constant support in encouraging this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kathyayini.

Additional information

Highlights

• PANI & PANI/MWCNTs was prepared by simple, easy interfacial Polymerization method.

• PANI/MWCNTs exhibited superior supercapacitance performance than PANI.

• Fabricated ASD offered an ED of 29 Wh/kg & 97% Cs retention for 5000 cycles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanna, B.P., Avadhani, D.N., Chaitra, K. et al. Synthesis of polyaniline/MWCNTs by interfacial polymerization for superior hybrid supercapacitance performance. J Polym Res 25, 123 (2018). https://doi.org/10.1007/s10965-018-1526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1526-2

Keywords

Navigation