Skip to main content
Log in

Synthesis and properties of novel biodegradable polyurethanes containing fluorinated aliphatic side chains

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study used 5H–octafluoropentanoylfluoride and 2-amino-2-methyl-1,3-propanediol to synthesize a novel fluoro chain extender 2,2,3,3,4,4,5,5-octafluoro-N-(1,3-dihydroxy-2-methylpropan-2-yl) pentanamide (ODMP). Furthermore, 4,4′-diphenylmethane diisocyanate served as the hard segment, polycaprolactone diol (PCL) served as the soft segment, and ODMP served as the chain extender in the novel synthesized polyurethanes (ODMP/PUs). Gel permeation chromatography revealed that the molecular weight of the ODMP/PUs increased when the ODMP content was increased. 1H and 19F nuclear magnetic resonance and Fourier transform infrared spectroscopy verified that the ODMP chain extenders were successfully synthesized and that the ODMP chain extenders were successfully incorporated into the backbone of the PUs. The interaction between the -NH (hydrogen bond) and CF2 groups in the ODMP/PUs became stronger when the ODMP content was increased. Thermal analysis revealed that the initial decomposition temperature of the ODMP/PUs decreased and the second decomposition temperature increased when the polymers’ ODMP content was increased. Higher ODMP content also resulted in the ODMP/PUs’ higher glass transition and dynamic glass transition temperatures and lower ODMP maximum stress and Young’s modulus, causing a lower elongation at break. ODMP/PUs with higher ODMP content exhibited more protrusions and more rugged surfaces. The chemical resistance of the ODMP/PUs increased when the fluorine content was increased. Scanning electron microscopy revealed that ODMP/PUs with higher PCL content exhibited higher levels of hydrolytic degradation. Finally, in vitro erythrocyte tests revealed that increasing the ODMP chain extender content reduced the average number of erythrocytes adhering to the surface of the PUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269

    Article  CAS  Google Scholar 

  2. Tien YI, Wei KH (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42:3213–3221

    Article  CAS  Google Scholar 

  3. Abraham GA, de Queiroz AAA, San Roman JS (2001) Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22:1971–1985

    Article  CAS  Google Scholar 

  4. Mequanint K, Sanderson R (2003) Nano-structure phosphorus- containing polyurethane dispersions: synthesis and crosslinking with melamine formaldehyde resin. Polymer 44:2631–2639

    Article  CAS  Google Scholar 

  5. Park HB, Lee YM (2002) Separation of toluene/nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments. J Membrane Sci 197:283–296

    Article  CAS  Google Scholar 

  6. Gugliuzza A, Clarizia G, Golemme G, Drioli E (2002) New breathable and waterproof coatings for textiles: effect of an aliphatic polyurethane on the formation of PEEK-WC porous membranes. Eur Polym J 38:235–242

    Article  CAS  Google Scholar 

  7. Kawakami H, Mikawa M, Takagi J, Nagaoka S (1996) Gas transfer and blood compatibility of fluorinated polyimide membranes. J Biomater Sci Polym En 7:1029–1038

    Article  CAS  Google Scholar 

  8. Furukawa M (1994) Property-structure relationships of polyurethane elastomers: imrovement of hydrolytic stability and thermal stability. J Appl Polym Sci-Appl Polym Symp 53:61–76

    Article  CAS  Google Scholar 

  9. Tonelli C, Trombetta T, Scicchitano M, Castiglioni G (1995) New perfluoropolyether soft segment containing polyurethanes. J Appl Polym Sci 57:1031–1042

    Article  CAS  Google Scholar 

  10. Sawada H (1996) Fluorinated peroxides. Chem Rev 96:1779–1808

    Article  CAS  Google Scholar 

  11. Sawada H, Ariyoshi Y, Lee L, Kyokane J, Kawase T (2000) A new approach to highly conductive polymer electrolytes: synthesis of gelling fluoroalkylated end-capped 2-acrylamido-2- methylpropanesulfonic acid copolymers containing poly(oxyethylene) units. Eur Polym J 36:2523–2526

    Article  CAS  Google Scholar 

  12. Ho T, Wynne KJ (1992) A new fluorinated polyurethane: polymerization, characterization, and mechanical properties. Macromolecules 25:3521–3527

    Article  CAS  Google Scholar 

  13. Honeychuck RV, Ho T, Wynne KJ, Nissan RA (1993) Preparation and characterization of polyurethanes based on a series of fluorinated diols. Chem Mater 5:1299–1306

    Article  CAS  Google Scholar 

  14. Su T, Wang GY, Wang SL, Hu CP (2010) Fluorinated siloxane- containing waterborne polyurethaneureas with excellent hemocompatibility, waterproof and mechanical properties. Eur Polym J 46:472–483

    Article  CAS  Google Scholar 

  15. Kashiwagi T, Ito Y, Imanishi Y (1993) Synthesis of non-throm- bogenicity of fluoroalkyl poly-ether-urethanes. J Biomat Sci Polym Ed 5:157–166

    Article  CAS  Google Scholar 

  16. Wanga LF, Wei YH (2005) Effect of soft segment length on properties of fluorinated polyurethanes. Colloid Surf B-Biointerfaces 41:249–255

    Article  Google Scholar 

  17. Chen KY, Kuo JF (2000) Synthesis and properties of novel fluorinated aliphatic polyurethanes with fluoro chain extenders. Macromol Chem Phys 201:2676–2686

    Article  CAS  Google Scholar 

  18. Wang LF (2007) Experimental and theoretical characterization of the morphologies in fluorinated polyurethanes. Polymer 48:894–900

    Article  CAS  Google Scholar 

  19. Wu CL, Chiu SH, Lee HT, Suen MC (2016) Synthesis and properties of biodegradable polycaprolactone/polyurethanes using fluoro chain extenders. Polym Adv Technol 27:665–676

    Article  CAS  Google Scholar 

  20. Su SK, Gu JH, Lee HT, Yu SH, Wu CL, Suen MC (2016) Effects of an aromatic Fluoro-diol and Polycaprolactone on the properties of the resultant polyurethanes. Adv Polym Technol. doi:10.1002/adv.21773

  21. Ge Z, Zhang XY, Dai JB, Li WH, Luo YJ (2008) Synthesis and characterization of fluorinated polyurethane with fluorine-containing pendent groups. Chin Chem Lett 19:1293–1296

    Article  CAS  Google Scholar 

  22. Ge Z, Zhang X, Dai J, Li W, Luo Y (2009) Synthesis, characterization and properties of a novel fluorinated polyurethane. Eur Polym J 45:530–536

    Article  CAS  Google Scholar 

  23. Tonelli C, Ajroldi G (2003) New fluoro-modified thermoplastic polyurethanes. J Appl Polym Sci 87:2279–2294

    Article  CAS  Google Scholar 

  24. Tonelli C, Trombetta T, Scicchitano M, Simeone G, Ajroldi G (1996) New fluorinated thermoplastic elastomers. J Appl Polym Sci 59:311–327

    Article  CAS  Google Scholar 

  25. Tonellia C, Ajroldi G, Turturro A, Marigo A (2001) Synthesis methods of fluorinated polyurethanes. 1. Effects on thermal and dynamic-mechanical behaviours. Polymer 42:5589–5598

    Article  Google Scholar 

  26. Tao L, Lin Y (2010) Synthesis and properties of fluorinated thermoplastic polyurethane elastomer. J Fluor Chem 131:36–41

    Article  Google Scholar 

  27. Mohanty AK, Misra M, Hinrinchsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276-277:1–24

    Article  Google Scholar 

  28. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  29. Gunatillake P, Mayadunne R, Adhikari R, El-Gewely MR (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347

    Article  CAS  Google Scholar 

  30. Pena J, Corrales T, Izquierdo-Barba I, Doadrio AL, Vallet-Regi M (2006) Long term degradation of poly(ε-caprolactone) films in biologically related fluids. Polym Degrad Stab 91:1424–1432

    Article  CAS  Google Scholar 

  31. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133

    Article  CAS  Google Scholar 

  32. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  33. Coulembier O, Degee P, Hedrick JL, Dubois P (2006) From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(b-malic acid) derivatives. Prog Polym Sci 31:723–747

    Article  CAS  Google Scholar 

  34. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  35. Li FG, Hou JN, Zhu W, Zhang XA, Xu M, Luo XL (1996) Crystallinity and morphology of segmented polyurethanes with different soft-segment length. J Appl Polym Sci 62:631–638

    Article  CAS  Google Scholar 

  36. Jeong HM, Ahn BK, Kim BK (2001) Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin. Eur Polym J 37:2245–2252

    Article  CAS  Google Scholar 

  37. Velankar S, Cooper SL (1998) Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length. Macromolecules 31:9181–9192

    Article  CAS  Google Scholar 

  38. Dadbin S, Frounchi M (2003) Effects of polyurethane soft segment and crosslink density on the morphology and mechanical properties of polyurethane/poly(allyl diglycol carbonate) simultaneous interpenetrating polymer networks. J Appl Polym Sci 89:1583–1595

    Article  CAS  Google Scholar 

  39. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

  40. Jiang X, Li JH, Ding MM, Tan H, Ling QY, Zhong YP (2007) Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. Eur Polym J 43:1838–1846

    Article  CAS  Google Scholar 

  41. Brunette CM, Hsu SL, Macknight WJ (1982) Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers. Macromolecules 15:71–77

    Article  CAS  Google Scholar 

  42. Chen SJ, Hu J, Zhuo HT, Yuen CW, Chan LK (2010) Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer 51:240–248

    Article  CAS  Google Scholar 

  43. Ferraria AM, Silva JDL, Rego AMB (2003) XPS studies of directly fluorinated HDPE: problems and solutions. Polymer 44:7241–7249

    Article  CAS  Google Scholar 

  44. Arun Prasath R, Nanjundan S, Pakula T, Klapper M (2004) Thermal and dynamic mechanical behaviour of calcium containing co-polyurethanes. Polym Degrad Stabil 85:911–923

    Article  Google Scholar 

  45. Brandsch R, Bar G, Whangbo MH (1997) On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy. Langmuir 13:6349–6353

    Article  CAS  Google Scholar 

  46. Sauer BB, Mclean RS, Thomas RR (1998) Tapping mode AFM studies of Nano-phases on fluorine-containing polyester coatings and Octadecyltrichlorosilane monolayers. Langmuir 14:3045–3051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maw-Cherng Suen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, SK., Gu, JH., Lee, HT. et al. Synthesis and properties of novel biodegradable polyurethanes containing fluorinated aliphatic side chains. J Polym Res 24, 142 (2017). https://doi.org/10.1007/s10965-017-1301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1301-9

Keywords

Navigation