Skip to main content
Log in

Polysulfone membranes containing ethylene glycol monomers: synthesis, characterization, and CO2/CH4 separation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Copolymers based on glassy and rubbery units have been developed to take advantage of both domains to enhance solubility and diffusivity. In this study, a series of gas separation membranes from polysulfone (PSF) containing ethylene glycol were synthesized via nucleophilic substitution polycondensation. The structures of copolymers were characterized by nuclear magnetic resonance spectra, Fourier transform infrared spectra, and thermal gravity analysis. The permeability and selectivity of the membranes were studied at different temperatures of 25–55 °C and pressures of 0.5–1.5 atm using single gases CO2 and CH4. Gas permeation measurements showed that copolymers with different contents of poly(ethylene glycol) exhibited different separation performances. For example, the membrane from PSF-PEG2000-20 containing 20 wt% poly(ethylene glycol) showed better performance in terms of ideal selectivity over the other seven copolymer membranes. The highest ideal CO2/CH4 selectivity was 43.0 with CO2 permeability of 6.4 Barrer at 1.5 atm and 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Cersosimo M, Brunetti A, Drioli E, Fiorino F, Dong GX, Lee JY, Lee YM (2015) Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. J Membr Sci 492:257–262

    Article  CAS  Google Scholar 

  2. Ansaloni L, Zhao Y, Jung BT, Ramasubramanian K, Baschetti MG, Winston WS (2015) Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations. J Membr Sci 490:18–28

    Article  CAS  Google Scholar 

  3. Nabian N, Ghoreyshi A, Rahimpour A, Shakeri M (2015) Performance evaluation and mass transfer study of CO2 absorption in flat sheet membrane contactor using novel porous polysulfone membrane. Korean J Chem Eng 32:2204–2211

    Article  CAS  Google Scholar 

  4. Quan S, Li S, Wang Z, Yan X, Guo Z, Shao L (2015) A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation. J Mater Chem A 3:13758–13766

    Article  CAS  Google Scholar 

  5. Zhang Y, Sunarso J, Liu S, Wang R (2013) Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenh Gas Contrl 12:84–107

    Article  CAS  Google Scholar 

  6. Rabiee H, Soltanieh M, Mousavi SA, Ghadimi A (2014) Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes. J Membr Sci 469:43–58

    Article  CAS  Google Scholar 

  7. Lau CH, Liu SL, Paul DR, Xia JZ, Jean YC, Chen HM, Shao L, Chung TS (2011) Silica nanohybrid membranes with high CO2 affinity for green hydrogen purification. Adv Energy Mater 1:634–642

    Article  CAS  Google Scholar 

  8. Abetz V, Brinkmann T, Dijkstra M, Ebert K, Fritsch D, Ohlrogge K, Paul D, Peinemann KV, Nunes SP, Scharnagl N, Schossig M (2006) Developments in membrane research: from material via process design to industrial application. Adv Eng Mater 8:328–358

    Article  CAS  Google Scholar 

  9. Mondal A, Mandal B (2014) CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. J Membr Sci 460:126–138

    Article  CAS  Google Scholar 

  10. Baker RW (2008) Vapor and gas separation by membranes. In: Li NN, Fane AG, Ho WS, Matsuura T (eds) Advanced membrane technology and applications. Wiley, New York, pp 557–580

  11. Mulder M (1996) Basic principles of membrane technology, 2nd edn. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  12. Wang X, Chen H, Zhang L, Yu R, Yang LJ (2014) Effects of coexistent gaseous components and fine particles in the flue gas on CO2 separation by flat-sheet polysulfone membranes. J Membr Sci 470:237–245

    Article  CAS  Google Scholar 

  13. Wonders AG, Paul DR (1979) Effect of CO2 exposure history on sorption and transport in polycarbonate. J Membr Sci 5:63–75

    Article  CAS  Google Scholar 

  14. Pedram MZ, Omidkhah M, Amooghin AE, Yegani R (2014) Facilitated transport by amine-mediated poly(vinyl alcohol) membranes for CO2 removal from natural gas. Polym Eng Sci 54:1268–1279

    Article  CAS  Google Scholar 

  15. Xing R, Ho WW (2009) Synthesis and characterization of crosslinked polyvinyllalcohol/polyethy-leneglyco blend membranes for CO2/CH4 separation. Jo Taiwan Instit Chem Eng 40:654–662

    Article  CAS  Google Scholar 

  16. Tena A, Vazquez-Guillo R, Marcos-Fernandez A, Hernandez A, Mallavia R (2015) Polymeric films based on blends of 6FDA-6FpDA polyimide plus several copolyfluorenes for CO2 separation. RSC Adv 5:41497–41505

    Article  CAS  Google Scholar 

  17. Car A, Stropnik C, Yave W, Peinemann KV (2008) Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep Purif Technol 62:110–117

    Article  CAS  Google Scholar 

  18. Lin H, Freeman BD (2004) Gas solubility, diffusivity and permeability in poly(ethyleneoxide). J Membr Sci 239:105–117

    Article  CAS  Google Scholar 

  19. Liu SL, Shao L, Chua ML, Lau CH, Wang H, Quan S (2013) Recent progress in the design of advanced PEO-containing membranes for CO2 removal. Prog Polym Sci 38:1089–1120

    Article  CAS  Google Scholar 

  20. Car A, Stropnik C, Yave W, Peinemann KV (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95

    Article  CAS  Google Scholar 

  21. Patel NP, Spontak RJ (2004) Gas-transport and thermal properties of a microphase-ordered poly(styrene-b-ethylene oxide-b-styrene) triblock copolymer and its blends with poly(ethylene glycol). Macromolecules 37:2829–2838

    Article  CAS  Google Scholar 

  22. Xia J, Liu S, Chung TS (2011) Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes. Macromolecules 44:7727–7736

    Article  CAS  Google Scholar 

  23. Quan S, Tang YP, Wang ZX, Jiang ZX, Wang RG, Liu YY, Shao L (2015) PEG-imbedded PEO membrane developed by a novel highly efficient strategy toward superior gas transport performance. Macromol Rapid Commun 36:490–495

    Article  CAS  Google Scholar 

  24. Xia J, Liu S, Lau CH, Chung TS (2011) Liquidlike poly(ethylene glycol) supported in the organic–inorganic matrix for CO2 removal. Macromolecules 44:5268–5280

    Article  CAS  Google Scholar 

  25. Car A, Stropnik C, Yave W, Peinemann KV (2008) Tailor-made polymericmembranes based on segmented block copolymers for CO2 separation. Adv Funct Mater 18:2815–2823

    Article  CAS  Google Scholar 

  26. Zhao HY, Ding XL, Yang PP, Li LY, Li X, Zhang YZ (2015) A novel multi-armed and star-like poly(ethylene oxide) membrane for CO2 separation. J Membr Sci 489:258–263

    Article  CAS  Google Scholar 

  27. Cheol HP, Lee JH, Jung JP, Bumsuk J, Jong HK (2015) A highly selective PEGBEM-g-POEM comb copolymer membrane for CO2/N2 separation. J Membr Sci 492:452–460

    Article  Google Scholar 

  28. Aitken CL, Koros WJ, Paul DR (1992) Gas transport properties of biphenol polysulfones. Macromolecules 25:3651–3658

    Article  CAS  Google Scholar 

  29. Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861

    Article  CAS  Google Scholar 

  30. Merkel TC, Bonder VI, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci Part B: Polym Phys 38:415–434

    Article  CAS  Google Scholar 

  31. Zhao D, Ren J, Li H, Li X, Deng M (2014) Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes. J Membr Sci 467:41–47

    Article  CAS  Google Scholar 

  32. Khan MM, Filiz V, Bengtson G, Shishatskiy S, Rahman MM, Lillepaerg J, Abetz V (2013) Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). J Membr Sci 436:109–120

    Article  CAS  Google Scholar 

  33. Sorribas S, Zornoza B, Téllez C, Coronas J (2014) Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural- and bio-gas upgrading. J Membr Sci 452:184–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Science Foundation of China (51572185) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luo Jujie or Ziqin Si.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jujie, L., He, X. & Si, Z. Polysulfone membranes containing ethylene glycol monomers: synthesis, characterization, and CO2/CH4 separation. J Polym Res 24, 1 (2017). https://doi.org/10.1007/s10965-016-1163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1163-6

Keywords

Navigation