Skip to main content
Log in

The effects of MWCNT length on the mechanical, crystallization and electromagnetic interference shielding effectiveness of PP/MWCNT composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The length of multi-walled carbon nanotubes (MWCNT) has an important influence on the properties of polymer/MWCNT composites. This study aims to examine the influence of the length of MWCNT on the mechanical properties, distribution, melting and crystallization behavior, and electromagnetic interference shielding effectiveness (EMI SE) of PP/MWCNT composites. The test results show that MWCNT of a short length contribute to better mechanical properties and have a better dispersion in the matrix. MWCNT also serve as a nucleating agent for PP, thereby increasing the crystallization temperature (Tc). In particular, short MWCNT provide PP/MWCNT composites with a greater degree of cyrstallinity. The conjunction of 8 wt% long MWCNT in PP/MWCNT composites results in an optimal electrical resistivity of 65.02 Ω-cm, and an average EMI SE of −29.47 dB. The polymer/MWCNT composites have properties that can be adjusted by using different lengths of MWCNT, which is advantageous for application in diverse products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shen L, Wang FQ, Yang H, Meng QR (2011) The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym Test 30(4):442–448

    Article  CAS  Google Scholar 

  2. Wen M, Sun X, Su L, Shen J, Li J, Guo S (2012) The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7):1602–1610

    Article  CAS  Google Scholar 

  3. Pak SY, Kim HM, Kim SY, Youn JR (2012) Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon 50(13):4830–4838

    Article  CAS  Google Scholar 

  4. Du B, Guo Z, Pa S, Liu H, Fang Z, Wu Y (2009) Flame retardant mechanism of organo-bentonite in polypropylene. Appl Clay Sci 45(3):178–184

    Article  CAS  Google Scholar 

  5. Lapčík L, Vašina M, Lapčíková B, Otyepková E, Waters KE (2015) Investigation of advanced mica powder nanocomposite filler materials: surface energy analysis, powder rheology and sound absorption performance. Compos Part B 77(0):304–310

    Google Scholar 

  6. Milani MA, González D, Quijada R, Basso NRS, Cerrada ML, Azambuja DS, Galland GB (2013) Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos Sci Technol 84(0):1–7

    Article  CAS  Google Scholar 

  7. Amirilargani M, Tofighy MA, Mohammadi T, Sadatnia B (2014) Novel poly(vinyl alcohol)/multiwalled carbon nanotube nanocomposite membranes for pervaporation dehydration of isopropanol: poly(sodium 4-styrenesulfonate) as a functionalization agent. Ind Eng Chem Res 53(32):12819–12829

    Article  CAS  Google Scholar 

  8. Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H, Ji G-Y, Yu Z-Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196

    Article  CAS  Google Scholar 

  9. Pegel S, Pötschke P, Petzold G, Alig I, Dudkin SM, Lellinger D (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49(4):974–984

    Article  CAS  Google Scholar 

  10. Jamali S, Paiva MC, Covas JA (2013) Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes. Polym Test 32(4):701–707

    Article  CAS  Google Scholar 

  11. Petit C, Burress J, Bandosz TJ (2011) The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites. Carbon 49(2):563–572

    Article  CAS  Google Scholar 

  12. Cravanzola S, Haznedar G, Scarano D, Zecchina A, Cesano F (2013) Carbon-based piezoresistive polymer composites: structure and electrical properties. Carbon 62(0):270–277

    Article  CAS  Google Scholar 

  13. Strååt M, Boldizar A, Rigdahl M, Hagström B (2011) Improvement of melt spinning properties and conductivity of immiscible polypropylene/polystyrene blends containing carbon black by addition of styrene-ethylene-butene-styrene block copolymer. Polym Eng Sci 51(6):1165–1169

    Article  Google Scholar 

  14. Thongruang W, Spontak RJ, Balik CM (2002) Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer 43(8):2279–2286

    Article  CAS  Google Scholar 

  15. Shrivastava NK, Khatua BB (2011) Development of electrical conductivity with minimum possible percolation threshold in multi-wall carbon nanotube/polystyrene composites. Carbon 49(13):4571–4579

    Article  CAS  Google Scholar 

  16. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72(12):1459–1476

    Article  CAS  Google Scholar 

  17. Ma PC, Tang BZ, Kim J-K (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46(11):1497–1505

    Article  CAS  Google Scholar 

  18. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A: Appl Sci Manuf 41(10):1345–1367

    Article  Google Scholar 

  19. Yoonessi M, Lebrón-Colón M, Scheiman D, Meador MA (2014) Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites. ACS Appl Mater Interfaces 6(19):16621–16630

    Article  CAS  Google Scholar 

  20. Zhou Z, Wang S, Lu L, Zhang Y, Zhang Y (2008) Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites. Compos Sci Technol 68(7–8):1727–1733

    Article  CAS  Google Scholar 

  21. Pan Y, Li L, Chan SH, Zhao J (2010) Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Compos A: Appl Sci Manuf 41(3):419–426

    Article  Google Scholar 

  22. Noh YJ, Pak SY, Hwang SH, Hwang JY, Kim SY, Youn JR (2013) Enhanced dispersion for electrical percolation behavior of multi-walled carbon nanotubes in polymer nanocomposites using simple powder mixing and in situ polymerization with surface treatment of the fillers. Compos Sci Technol 89(0):29–37

    Article  CAS  Google Scholar 

  23. Arroyo M, Lopez-Manchado MA, Avalos F (1997) Crystallization kinetics of polypropylene: II. Effect of the addition of short glass fibres. Polymer 38(22):5587–5593

    Article  CAS  Google Scholar 

  24. Xu T, Wang Y, Xu Y, Cao W, Liu C, Shen C (2014) Crystallization behavior and nucleation analysis of isotactic polypropylene with a multiamide nucleating agent. Polym Test 36(0):62–68

    Article  CAS  Google Scholar 

  25. Więckowski TW, Janukiewicz JM (2006) Methods for evaluating the shielding effectiveness of textiles. Fibres & Textiles in Eastern Europe Nr 5(59)

  26. Wang J, Xiang C, Liu Q, Pan Y, Guo J (2008) Ordered mesoporous carbon/fused silica composites. Adv Funct Mater 18(19):2995–3002

    Article  CAS  Google Scholar 

  27. Korayem AH, Barati MR, Simon GP, Zhao XL, Duan WH (2014) Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch. Compos A: Appl Sci Manuf 61(0):126–133

    Article  CAS  Google Scholar 

  28. Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69(11–12):1756–1763

    Article  CAS  Google Scholar 

  29. Chandrasekaran S, Faiella G, Prado LASA, Tölle F, Mülhaupt R, Schulte K (2013) Thermally reduced graphene oxide acting as a trap for multiwall carbon nanotubes in bi-filler epoxy composites. Compos A: Appl Sci Manuf 49:51–57

    Article  CAS  Google Scholar 

  30. Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets – dispersion and synergy effects. Carbon 78:268–278

    Article  CAS  Google Scholar 

  31. Teng C-C, Ma C-CM, Cheng B-D, Shih Y-F, Chen J-W, Hsiao Y-K (2011) Mechanical and thermal properties of polylactide-grafted vapor-grown carbon nanofiber/polylactide nanocomposites. Compos A: Appl Sci Manuf 42(8):928–934

    Article  Google Scholar 

  32. Yuan J-M, Fan Z-F, Chen X-H, Chen X-H, Wu Z-J, He L-P (2009) Preparation of polystyrene–multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer 50(14):3285–3291

    Article  CAS  Google Scholar 

  33. Tiusanen J, Vlasveld D, Vuorinen J (2012) Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts. Compos Sci Technol 72(14):1741–1752

    Article  CAS  Google Scholar 

  34. Xin F, Li L (2011) Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Compos A: Appl Sci Manuf 42(8):961–967

    Article  Google Scholar 

  35. Gao Y, Wang Y, Shi J, Bai H, Song B (2008) Functionalized multi-walled carbon nanotubes improve nonisothermal crystallization of poly(ethylene terephthalate). Polym Test 27(2):179–188

    Article  CAS  Google Scholar 

  36. Xu Y, Shang S, Huang J (2010) Crystallization behavior of poly(trimethylene terephthalate)-poly(ethylene glycol) segmented copolyesters/multi-walled carbon nanotube nanocomposites. Polym Test 29(8):1007–1013

    Article  CAS  Google Scholar 

  37. Ke K, Wang Y, Yang W, Xie B-H, Yang M-B (2012) Crystallization and reinforcement of poly (vinylidene fluoride) nanocomposites: role of high molecular weight resin and carbon nanotubes. Polym Test 31(1):117–126

    Article  CAS  Google Scholar 

  38. Xu D, Wang Z (2008) Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer 49(1):330–338

    Article  CAS  Google Scholar 

  39. Razavi-Nouri M, Ghorbanzadeh-Ahangari M, Fereidoon A, Jahanshahi M (2009) Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polym Test 28(1):46–52

    Article  CAS  Google Scholar 

  40. Zhao S, Chen F, Huang Y, Dong J-Y, Han CC (2014) Crystallization behaviors in the isotactic polypropylene/graphene composites. Polymer 55(16):4125–4135

    Article  CAS  Google Scholar 

  41. Kueseng P, Sae-oui P, Rattanasom N (2013) Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube: effect of preparation methods. Polym Test 32(4):731–738

    Article  CAS  Google Scholar 

  42. Ayatollahi MR, Shadlou S, Shokrieh MM, Chitsazzadeh M (2011) Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym Test 30(5):548–556

    Article  CAS  Google Scholar 

  43. Wang R, Yang H, Wang J, Li F (2014) The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber. Polym Test 38:53–56

    Article  CAS  Google Scholar 

  44. Arjmand M, Mahmoodi M, Gelves GA, Park S, Sundararaj U (2011) Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon 49(11):3430–3440

    Article  CAS  Google Scholar 

  45. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285

    Article  CAS  Google Scholar 

  46. Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R Rep 74(7):211–232

    Article  Google Scholar 

  47. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7):1738–1746

    Article  CAS  Google Scholar 

  48. Markham D (1999) Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design. Mater Des 21(1):45–50

    Article  Google Scholar 

Download references

Acknowledgments

The authors would especially like to thank the Ministry of Science and Technology of Taiwan, for financially supporting this research under Contract MOST 104-2622-E-166-002-CC2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, ZI., Lou, CW., Pan, YJ. et al. The effects of MWCNT length on the mechanical, crystallization and electromagnetic interference shielding effectiveness of PP/MWCNT composites. J Polym Res 24, 32 (2017). https://doi.org/10.1007/s10965-016-1121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1121-3

Keywords

Navigation