Skip to main content
Log in

Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel method composed of an interpenetrating polymer network (IPN) formation reaction in aqueous solution was developed to improve the hydrophilicity of silicone rubber (SR) substrate. This solution phase method is compatible, simple, and convenient for some sensitive biomedical applications of SR devices because of using water as reaction solvent instead of harmful chemicals. In this work, a sequential interpenetrating polymer network formation in the proximal layer of SR surface, using poly(2-hydroxyethyl methacrylate) (PHEMA), as the second network was conducted so that led to actually surface modification resulting in an improved hydrophilicity. The modified surfaces were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) to assess the wettability, chemical composition and morphology of the surface modified PDMS. The results indicated that the surface modification method offered a novel and facile approach to improve the hydrophilicity of SR without altering its bulk properties. This method could be suitable for biomedical applications because of using water as a monomer solvent and polymerization medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jerschow P (2001) Silicone elastomers, vol 12. Wacker Chemie GmbH, Germany

    Google Scholar 

  2. Chu PK, Liu X (2008) Biomaterials fabrication and processing handbook. CRC Press, New York

    Google Scholar 

  3. Mark JE, Allcock HR, West R (2005) Inorganic polymers, 2nd edn. Oxford University Press, New York

    Google Scholar 

  4. Whitesides GM (2006) Nature 442:368–373

    Article  CAS  Google Scholar 

  5. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Electrophoresis 21:27–40

    Article  CAS  Google Scholar 

  6. Ozdemir M, Yurteri CU, Sadikoglu H (1999) Crit. Rev. Food Sci. Nutr. 39(5):457–477

    Article  CAS  Google Scholar 

  7. Abbasi F, Mirzadeh H, Katbab AA (2001) Polym. Int. 50:1279–1287

    Article  CAS  Google Scholar 

  8. Hron P (2003) Polym. Int. 52:1531–1539

    Article  CAS  Google Scholar 

  9. Courtney JM, Gilchrist T (1980) Med. Biol. Eng. Comput. 18:538–540

    Article  CAS  Google Scholar 

  10. Makamba H, Hsieh YY, Sung WC, Chen SH (2005) Anal. Chem. 77:3971–3978

    Article  CAS  Google Scholar 

  11. Zhu Y, Otsubo M, Honda C, Tanaka S (2006) Polym. Degrad. Stab. 91:1448–1454

    Article  CAS  Google Scholar 

  12. Olah A, Hillborg H, Vancso GJ (2005) Appl. Surf. Sci. 239:410–423

    Article  CAS  Google Scholar 

  13. Lucas P, Robin JJ (2007) Adv. Polym. Sci. 209:111–147

    CAS  Google Scholar 

  14. Totten GE, Liang H (2004) Surface modification and mechanisms. Marcel Dekker, New York

    Google Scholar 

  15. Ma Z, Mao Z, Gao C (2007) Colloids Surf. B: Biointerfaces 60:137–157

    Article  CAS  Google Scholar 

  16. Uyama Y, Kato K, Ikada Y (1998) Adv. Polym. Sci. 137:1–39

    Article  CAS  Google Scholar 

  17. Wong I, Ho CM (2009) Microfluid. Nanofluid. 7:291–306

    Article  CAS  Google Scholar 

  18. Gomathi N, Sureshkumar A, Neogi S (2008) Curr. Sci. 94:1478–1486

    CAS  Google Scholar 

  19. Deng J, Wang L, Liu L, Yang W (2009) Prog. Polym. Sci. 34:156–193

    Article  CAS  Google Scholar 

  20. Ratner BD (1995) Biosens Bioelectron 10:797–804

    Article  CAS  Google Scholar 

  21. Chang YZ, Lin JT, Prasannan A, Chen PC, Ko CY, Tsai HC (2015) J Polym Res 22:1–9

    Article  Google Scholar 

  22. Vadgama P (2005) Surfaces and interfaces for biomaterials. CRC Press, Cambridge

    Book  Google Scholar 

  23. ​Wu Y, Huang Y, Ma H (2007) J Am Chem Soc 129:7226–7227

    Article  CAS  Google Scholar 

  24. ​Heng Z, Zeng Z, Chen Y, Zou H, Liang M (2015) J Polym Res 22:1–7

    Article  CAS  Google Scholar 

  25. ​Rajan KP, Al-Ghamdi A, Ramesh P, Nando GB (2012) J Polym Res 19:1–13

    Article  CAS  Google Scholar 

  26. Coelho EC, Dos Santos DP, Ciuffi KJ, Ferrari JL, Ferreira BA, Schiavon MA (2014) J. Polym. Res. 21:1–11

    Article  CAS  Google Scholar 

  27. ​Abbasi F, Mirzadeh H, Katbab AA (2002) J Appl Polym Sci 85:1825–1831

    Article  CAS  Google Scholar 

  28. Zhou J, Ellis AV, Voelcker NH (2010) Electrophoresis 31:2–16

    Article  CAS  Google Scholar 

  29. Zhou J, Khodakov DA, Ellis AV, Voelcker NH (2012) Electrophoresis 33:89–104

    Article  Google Scholar 

  30. Belanger D, Pinson J (2011) Chem. Soc. Rev. 40:3995–4048

    Article  CAS  Google Scholar 

  31. Maji D, Lahiri SK, Das S (2012) Surf. Interface Anal. 44:62–69

    Article  CAS  Google Scholar 

  32. Devanathan T, Young KA (1981) Biomat Med Dev Art Org 9:225–246

    CAS  Google Scholar 

  33. Osada H, Ward CA, Duffin J, Nelms M, Cooper ID (1978) Am. J. Phys. 234:646–659

    Google Scholar 

  34. Seoa J, Lee LP (2006) Sensors Actuators B Chem. 119:192–198

    Article  Google Scholar 

  35. Gaob ZNF, Jiaa X, Zhanga W, Chena W, Qian KY (2006) Colloids Surf. A Physicochem. Eng. Asp. 272:170–175

    Article  Google Scholar 

  36. Ratner BD (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, London

    Google Scholar 

  37. H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, G. J. Vancso, Langmuir 20, 3, 785–794 (2004).

    Google Scholar 

  38. M. J. Owen, P. J. Smith, Journal of adhesion science and technology 8, 10, 1063–1075 (1994).

    Google Scholar 

  39. Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikström K (2000) Polymer 4118:6851–6863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoreishi, S.G., Abbasi, F. & Jalili, K. Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface. J Polym Res 23, 115 (2016). https://doi.org/10.1007/s10965-016-1007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1007-4

Keywords

Navigation