Skip to main content
Log in

Preparation and characterization of aromatic polyimides derived from 4,4′-oxydiphthalic anhydride and 4,4′-diaminodiphenylmethane with different alkyl substituents

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

New soluble polyimides were synthesized from different 4,4′-diaminodiphenylmethane monomers with different alkyl substituents [4′4′-diamino-3,3′-dimethyl-diphenyl-methane, DDMDPM; 4,4′-methylene -bis(2-ethyl-6-methylaniline), MBEMA; and 4,4′-methylene-bis(2,6-diethylaniline), MBDEA] in one-step with the poly(amic acid)s prepared from the polyaddition of 4,4′-oxydiphthalic anhydride (ODPA). The structures of the synthesized polyimides were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy measurements. The sizes and numbers of alkyl substituents affected the thermal properties, dielectric constants, and solubilities of the polyimides. The obtained polyimides were soluble in various solvents, such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), tetrahydrofuran (THF), dichloromethane (DCM), and chloroform (CClH3). These polyimides exhibited excellent thermal stability with a decomposition temperature (Td) greater than 500 °C and relatively low coefficients of thermal expansion and dielectric constants. The resulting properties make these new polyimides attractive for practical applications.

Typical mechanism for the synthesis of polyimides from 4,4′-diamino-diphenyl-methane monomers and 4,4′-Oxydiphthalic anhydride

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang L, Chang P, Cheng CL (2006) Structural effects of pendant groups on thermal and electrical properties of polyimides. J Appl Polym Sci 100:4672–4678

    Article  CAS  Google Scholar 

  2. Jiang LY, Wang Y, Chung TS, Qiao XY, Lai JY (2009) Polyimides membranes for pervaporation and biofuels separation. Prog Polym Sci 34:1135–1160

    Article  CAS  Google Scholar 

  3. Li Y, Wang Z, Li GJ, Ding MX, Yan JL (2012) Synthesis and properties of polyimides based on isomeric (4, 4′-methylenediphenoxyl) bis (phthalic anhydride)s (BPFDAs). J Polym Res 19:9772–9778

    Article  Google Scholar 

  4. Ghosh MK (1996) In: Ghosh MK, Mittal KL (eds) Polyimides: fundamentals and applications. Marcel Dekker, Inc, New York

    Google Scholar 

  5. Myung BY, Kim JJ, Yoon TH (2002) Synthesis and characterization of novel 3,6-di[3′,5′-bis(trifluoromethyl)phenyl] pyromellitic dianhydride for polyimide synthesis. J Polym Sci A Polym Chem 40:4217–4227

    Article  CAS  Google Scholar 

  6. Jiang LY, Chung TS (2010) Homogeneous polyimide/cyclodextrin compositemembranes for pervaporation dehydration of isopropanol. J Membr Sci 346:45–58

    Article  CAS  Google Scholar 

  7. Wang Y, Jiang L, Matsuura T, Chung TS, Goh SH (2008) Investigation of the fundamental differences between polyamide-imide (PAI) and polyetherimide (PEI) membranes for isopropanol dehydration via pervaporation. J Membr Sci 318:217–226

    Article  CAS  Google Scholar 

  8. Kung G, Jiang LY, Wang Y, Chung TS (2010) Asymmetric hollow fibers by polyimide and polybenzimidazole blends for toluene/iso-octane separation. J Membr Sci 360:303–314

    Article  CAS  Google Scholar 

  9. Song ZW, Zhu JM, Jiang LY (2014) Novel polysiloxaneimide/polyetherimide/non-woven fabric composite membranes for organophilic pervaporation. J Membr Sci 472:77–90

    Article  CAS  Google Scholar 

  10. Zheng Y, Zhai Y, Li G, Guo B, Zeng X, Wang L, Yu H, Guo J (2011) Synthesis and properties of a high-molecular-weight poly(amic acid) and polyimide based on 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. J Appl Polym Sci 121:702–706

    Article  CAS  Google Scholar 

  11. Akhter T, Siddiqi HM, Akhter Z, Butt MS (2011) Synthesis and characterization of some polyimide-epoxy composites. E-Polymers 022:1–13

    Google Scholar 

  12. Yang CP, Chen WT (1993) Synthesis and properties of novel aromatic polyimides of 2,3-bis(4-aminophenoxy)naphthalene. Macromolecules 26:4865–4871

    Article  CAS  Google Scholar 

  13. Li F, Fang S, Ge JJ, Honigfort PS, Chen JC, Harris FW, Cheng SZD (1999) Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films. Polymer 40:4571–4583

    Article  CAS  Google Scholar 

  14. Hsao SH, Chen YJ (2002) Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. Eur Polym J 38:815–828

    Article  Google Scholar 

  15. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37:907–974

    Article  CAS  Google Scholar 

  16. Garnett JCM (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc London Ser A203:385–420

    Article  Google Scholar 

  17. Giesa R, Keller U, Eiselt P, Schmidt HW (1993) Synthesis and thermal properties of aryl-substituted rod-like polyimides. J Polym Sci A Polym Chem 31:141–151

    Article  CAS  Google Scholar 

  18. Kuznetsov AA, Yablokova MY, Buzin PV, Tsegelskaya AY, Kaminskii VA (2004) New alternating copolyimides by high temperature synthesis in benzoic acid medium. High Perform Polym 16:89–100

    Article  CAS  Google Scholar 

  19. Kim SD, Lee S, Heo J, Kim SY, Chung LS (2013) Soluble polyimides with trifluoromethyl pendent groups. Polymer 54:5648–5654

    Article  CAS  Google Scholar 

  20. Dong J, Yin C, Luo W, Zhang Q (2013) Synthesis of organ-soluble copolyimides by one-step polymerization and fabrication of high performance fibers. J Mater Sci 48:7594–7602

    Article  CAS  Google Scholar 

  21. Chung IS, Park CE, Ree M, Kim SY (2001) Soluble polyimides containing benzimidazole rings for interlevel dielectrics. Chem Mater 13:2801–2806

    Article  CAS  Google Scholar 

  22. Liaw DJ, Liaw BY (1998) Synthesis and characterization of new soluble polyimides from 3,3′,4,4′-benzhydrol tetracarboxylic dianhydride and various diamines. Chem Mater 10:734–739

    Article  CAS  Google Scholar 

  23. Kim SI, Ree M, Shin TJ, Jung JC (1999) Synthesis of new aromatic polyimides with various side chains containing a biphenyl mesogen unit and their abilities to control liquid-crystal alignments on the rubbed surface. J Polym Sci A Polym Chem 37:2909–2921

    Article  CAS  Google Scholar 

  24. Chen SH, Tsao CT, Chang CH, Wu YM, Liu ZW, Lin CP, Wang CK, Hsieh KH (2012) Synthesis and characterization of thermal-responsive chitin-based polyurethane copolymer as a smart material. Carbohydr Polym 88:1483–1487

    Article  CAS  Google Scholar 

  25. Yoo DK, Lim SK, Yoon TH, Kim D (2003) Physical properties and stress analysis of low dielectric polyimide films containing adamantine pendant group. Polym J 35:697–703

    Article  CAS  Google Scholar 

  26. Kakani SL (2006) In: Kakani SL (ed) Material science: chapter 13. Thermal and optical properties of materials. New Age International, Ltd, New Delhi

    Google Scholar 

  27. Aguilar-Lugo C, Perez-Martinez AL, Guzman-Lucero D, Likhatchev D, Alexandrova L (2012) In: Marc Jean Médard A (ed) High Performance Polymers–Polyimides Based –from Chemistry to Applications: Chapter 1. Polyimides Based on 4-4′-Diaminotriphenylmethane (DA-TPM). InTech, Rijeka

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support for this research by the Ministry of Economic Affairs in Taiwan under the grant numbers 101-EC-17-A-08-S1-205 and Kaohsiung Medical University in Taiwan under the grant numbers KMU-TP103B03, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Kuang Wang or Kuo-Huang Hsieh.

Additional information

Wei-Yao Chang and Szu-Hsien Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, WY., Chen, SH., Yang, CH. et al. Preparation and characterization of aromatic polyimides derived from 4,4′-oxydiphthalic anhydride and 4,4′-diaminodiphenylmethane with different alkyl substituents. J Polym Res 22, 38 (2015). https://doi.org/10.1007/s10965-015-0679-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0679-5

Keywords

Navigation