Skip to main content
Log in

Effect of molecular weight distribution on rheological, crystallization and mechanical properties of polyethylene-100 pipe resins

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this article, a series of commercial bimodal polyethylene-100 (PE100) resins were synthesized to clarify the effect of molecular weight distribution (MWD) on rheological, crystallization and mechanical properties of bimodal PE. The GPC results show that the three GC100S samples with similar MWD merely differ in the ratio of low molecular weight (MW) fraction which gradually ascends from 50 % to 58 %. Rheological measurements were performed to show that the low MW fraction which has the function of dilution and lubrication can obviously decline the melt elasticity and increase the onset shear rate of shark-skin failure, which dramatically improve the processability of GC100S. Furthermore, isothermal crystallization and stepwise segregation crystallization were studied by differential scanning calorimetry (DSC). It appears that the introduction of homopolymerized low molecular fraction could remarkably promote the crystallization capacity and form thick lamellae, which eventually improve the rapid crack propagation (RCP) resistance of PE100 pipe. On the other hand, uniaxial tensile test was used to evaluate slow crack growth (SCG) resistance of PE100 pipes. It shows that the concentration of intercrystalline tie molecules declines with the increasing ratio of low MW fraction, which slightly deteriorates the SCG resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun X, Yang MB (2011) Fracture behavior of bimodal polyethylene: effect of molecular weight distribution characteristics. Polymer 52(2):564–570

    Article  CAS  Google Scholar 

  2. Krumme A, Viikna A (2004) crystallization behavior of high density polyethylene blends with bimodal molar mass distribution 1. Basic characteristics and isothermal crystallization. Eur Polymer J 40(2):359–369

    Article  CAS  Google Scholar 

  3. Song SJ, Yang YL (2008) Effect of small amount of ultra high molecular weight component on the crystallization behaviors of bimodal high density polyethylene. Polymer 49(12):2964–2973

    Article  CAS  Google Scholar 

  4. Hubert L, Seguela R (2001) Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. I. Microstructure and crystallization kinetics. Polymer 42(20):8425–8434

    Article  CAS  Google Scholar 

  5. Hubert L, Seguela R (2002) Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. II. Short- term creep of isotropic and drawn materials. J Appl Polym Sci 84(12):2308–2317

    Article  CAS  Google Scholar 

  6. Covezzi M (1995) The spherilene process: linear polyethylenes. Macromol Symp 89(1):577–586

    Article  CAS  Google Scholar 

  7. Frank P (2001) Bimodal polyethylene-Interplay of catalyst and process. Macromol Symp 163(1):135–144

    Article  Google Scholar 

  8. Lu XC, Brown N (1996) The critical molecular weight for resisting slow crack growth in a polyethylene. J Polymer Sci, Part B: Polymer Phys 34(10):1809–1813

    Article  CAS  Google Scholar 

  9. Yamaguchi M, Gogos CG (2002) Relation between molecular structure and flow instability for ethylene/α-olefin copolymers. Polymer 43(19):5249–5255

    Article  CAS  Google Scholar 

  10. Aguilar M, Vega JF (2001) New aspects on the rheological behaviour of metallocene catalysed polyethylenes. Polymer 42(24):9713–9721

    Article  CAS  Google Scholar 

  11. Vega JF, Santamaria A (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 31(11):3639–3647

    Article  CAS  Google Scholar 

  12. Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26(6):895–944

    Article  CAS  Google Scholar 

  13. Mavridis H, Shroff RN (1992) Temperature dependence of polyolefin melt rheology. Polym Eng Sci 32(23):1778–1791

    Article  CAS  Google Scholar 

  14. Vega JF, Munoz-Escalona A (1996) Comparison of the rheological properties of metallocene-catalyzed and conventional high-density polyethylenes. Macromolecules 29(3):960–965

    Article  CAS  Google Scholar 

  15. Khanna YP (1990) A barometer of crystallization rates of polymeric materials. Polym Eng Sci 30(24):1615–1619

    Article  CAS  Google Scholar 

  16. Avrami M (1939) Kinetics of phase change I. J Chem Phys 7(12):11032–11121

    Article  Google Scholar 

  17. Avrami M (1940) Kinetics of phase change II. J Chem Phys 8(2):2122–2241

    Article  Google Scholar 

  18. Anantawaraskul S (2005) Fractionation of semicrystalline polymers by crystallization analysis fractionation and temperature rising elution fractionation. Adv Polym Sci 182:1–54

    Article  CAS  Google Scholar 

  19. Tarasova E, Viikna A (2011) Triple crystallization behavior of fractionated ethylene/α-olefin copolymers of different catalyst type. J Polym Res 18(2):207–216

    Article  CAS  Google Scholar 

  20. Cazenave J, Seguela R (2006) Short-term mechanical and structural approaches for the evaluation of polyethylene stress crack resistance. Polymer 47(11):3904–3914

    Article  CAS  Google Scholar 

  21. Lu X, Brown N (1995) The effect of crystallinity on fracture and yielding of polyethylene. Polymer 36(22):4239–4244

    Article  CAS  Google Scholar 

  22. Witold B, Willi F (1986) Impact energy and rapid crack propagation in plastic pipes. Polymer 27(1):76–79

    Article  Google Scholar 

  23. Plummer CJG (2004) Microdeformation and fracture in bulk polyolefins. Adv Polym Sci 169:75–119

    Article  CAS  Google Scholar 

  24. Lustiger A, Markham RL (1983) Importance of tie molecules in preventing polyethylene fracture under long-term loading conditions. Polymer 24(12):1647–1654

    Article  CAS  Google Scholar 

  25. Chen Y, Liu PB (2013) Investigations of environmental stress cracking resistance of HDPE/UHMWPE and LDPE/UHMWPE blends. J Polym Res 20:141

    Article  CAS  Google Scholar 

  26. Bhattacharya SK, Brown N (1985) The initiation of crack growth in linear polyethylene. J Mater Sci 20(8):2767–2775

    Article  CAS  Google Scholar 

  27. Brown N, Lu X (1995) A fundamental theory for slow crack growth in polyethylene. Polymer 36(3):543–548

    Article  CAS  Google Scholar 

  28. Haager M, Pinter G (2004) Estimation of slow crack growth behavior in polyethylene after stepwise isothermal crystallization. Macromol Symp 217(1):383–390

    Article  CAS  Google Scholar 

  29. Peres FM, Schon CG (2007) An alternative approach to the evaluation of the slow crack growth resistance of polyethylene resins used for water pipe extrusion. J Polym Res 14(3):181–189

    Article  CAS  Google Scholar 

  30. Frank A, Freimann W (2009) A fracture mechanics concept for the accelerated characterization of creep crack growth in PE-HD pipe grades. Eng Fract Mech 76(18):2780–2787

    Article  Google Scholar 

  31. Sharif A, Mohammadi N (2008) Practical work of crack growth and environmental stress cracking resistance of semicrystalline polymers. J Appl Polym Sci 110(5):2756–2762

    Article  CAS  Google Scholar 

  32. Crist B, Metaxas C (2004) Neck propagation in polyethylene. J Polym Sci B Polym Phys 42(11):2081–2091

    Article  CAS  Google Scholar 

  33. Humbert S, Vigier G (2009) Polyethylene yielding behaviour: what is behind the correlation between yield stress and crystallinity. Polymer 50(15):3755–3761

    Article  CAS  Google Scholar 

  34. Seguela R (2007) On the natural draw ratio of semi-crystalline polymers: review of the mechanical, physical and molecular aspects. Macromol Mater Eng 292(3):235–244

    Article  CAS  Google Scholar 

  35. Cheng JJ, Polak MA (2008) A tensile strain hardening test indicator of environmental stress cracking resistance. J Macromol Sci A Pure Appl Chem 45(8):599–611

    Article  CAS  Google Scholar 

  36. Kurelec L, Teeuwen M (2005) Strain hardening modulus as a measure of environmental stress crack resistance of high density polyethylene. Polymer 46(17):6369–6379

    Article  CAS  Google Scholar 

  37. Yang Y, Wang XJ (2013) Effect of the contribution of crystalline and amorphous phase on tensile behavior of poly (phenylene sulfide). J Polym Res 20:198

    Article  Google Scholar 

  38. Kuriyagawa M, Nitta K (2011) Structural explanation on natural draw ratio of metallocene-catalyzed high density polyethylene. Polymer 52(15):3469–3477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Ming Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T., Yu, L., Cao, Y. et al. Effect of molecular weight distribution on rheological, crystallization and mechanical properties of polyethylene-100 pipe resins. J Polym Res 20, 271 (2013). https://doi.org/10.1007/s10965-013-0271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0271-9

Keywords

Navigation