Skip to main content
Log in

Characterization of shape recovery via creeping and shape memory effect in ether-vinyl acetate copolymer (EVA)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Shape recovery in a commercial ether–vinyl acetate copolymer (EVA) was systematically characterized by studying its creep and the thermoresponsive shape-memory effect (SME). The influences of the programming temperature and maximum uniaxial tension strain on the shape-fixity ratio and the shape-recovery ratio were investigated quantitatively. In addition to excellent SME, high elasticity and high creep were observed at around room temperature (with the EVA in the glassy state). The underlying mechanisms for the different shape-recovery phenomena (i.e., creep and the SME) are discussed. Two potential applications utilizing the shape-recovery property and high elasticity of this EVA are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–b
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13a–d
Fig. 14a–c
Fig. 15a–c

Similar content being viewed by others

References

  1. Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Shape memory materials. Mater Today 13:54–61

    Article  CAS  Google Scholar 

  3. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640

    Article  CAS  Google Scholar 

  4. Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, Zhang JL (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:9952

    Article  Google Scholar 

  5. Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23:11–19

    Article  CAS  Google Scholar 

  6. Lendlein A (2010) Shape-memory polymers. Springer, Berlin

    Book  Google Scholar 

  7. Ge YL, Heczko O, Soderberg O, Hannula SP (2006) Magnetic domain evolution with applied field in a Ni-Mn-Ga magnetic shape memory alloy. Scripta Mater 54:2155–2160

    Article  CAS  Google Scholar 

  8. Funakubo H (ed) (1987) Shape memory alloys. Gordon and Breach, New York

  9. Miyazaki S, Fu YQ, Huang WM (2009) Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, New York

    Book  Google Scholar 

  10. Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H (2012) Cooling-/water-responsive shape memory hybrids. Compos Sci Technol 72:1178–1182

    Article  CAS  Google Scholar 

  11. Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105

    Article  Google Scholar 

  12. Jung YC, So HH, Cho JW (2006) Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligometric silsesquioxane. J Macromol Sci B 45:1189–1189

    Article  CAS  Google Scholar 

  13. Zhao Y, Wang CC, Huang WM, Purnawali H (2011) Buckling of poly(methyl methacrylate) in stimulus-responsive shape recovery. Appl Phys Lett 99:131911

    Article  Google Scholar 

  14. Zhao CS, Nie SQ, Tang M, Sun SD (2011) Polymeric pH-sensitive membranes—a review. Prog Polym Sci 36:1499–1520

    Article  CAS  Google Scholar 

  15. Wang CC, Zhao Y, Purnawali H, Huang WM, Sun L (2012) Chemically induced morphing in polyurethane shape memory polymer micro fibers/springs. React Funct Polym 72:757–764

    Article  CAS  Google Scholar 

  16. Willett JL (2008) Humidity-responsive starch-poly(methyl acrylate) films. Macromol Chem Physic 209:764–772

    Article  CAS  Google Scholar 

  17. Lendlein A, Jiang HY, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  CAS  Google Scholar 

  18. Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874

    Article  CAS  Google Scholar 

  19. Hussein H, Harrison D (2008) New technologies for active disassembly: using the shape memory effect in engineering polymers. Int J Prod Dev 6:431–439

    Article  Google Scholar 

  20. Purnawali H, Xu WW, Zhao Y, Ding Z, Wang CC, Huang WM, Fan H (2012) Poly(methyl methacrylate) for active disassembly. Smart Mater Struct 21:075006

    Article  Google Scholar 

  21. Yang FQ, Zhang SL, Li JCM (1997) Impression recovery of amorphous polymers. J Electron Mater 26:859–862

    Article  CAS  Google Scholar 

  22. Bianchi O, Oliveira RVB, Fiorio R, Martins JDN, Zattera AJ, Canto LB (2008) Assessment of Avrami, Ozawa and Avrami–Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym Test 27:722–729

    Google Scholar 

  23. Stelescu MD, Manaila E, Craciun G, Zuga N (2012) Crosslinking and grafting ethylene vinyl acetate copolymer with accelerated electrons in the presence of polyfunctional monomers. Polym Bull 68:263–285

    Article  CAS  Google Scholar 

  24. Matsumura K, Hyon SH, Nakajima N, Peng C, Tsutsumi S (2000) Surface modification of poly(ethylene-co-vinyl alcohol) (EVA). Part I. Introduction of carboxyl groups and immobilization of collagen. J Biomed Mater Res 50:512–517

    Article  CAS  Google Scholar 

  25. Arun M, Silja PK, Mohanan PV (2011) Evaluation of hydroxyapatite-bioglass and hydroxyapatite-ethyl vinyl acetate composite extracts on antioxidant defense mechanism and genotoxicity: an in vitro study. Toxicol Mech Methods 21:561–566

    Article  CAS  Google Scholar 

  26. Tanrattanakul V, Kaewprakob T (2011) Effect of different curing systems on heat shrinkability and mechanical properties of ethylene vinyl acetate/epoxidized natural rubber blends. J Appl Polym Sci 119:38–46

    Article  CAS  Google Scholar 

  27. Li FK, Zhu W, Zhang X, Zhao CT, Xu M (1999) Shape memory effect of ethylene-vinyl acetate copolymers. J Appl Polym Sci 71:1063–1070

    Article  CAS  Google Scholar 

  28. Tanrattanakul V, Kaewprakob T (2009) Effect of rubber content on mechanical properties and heat shrinkage of ethylene vinyl acetate copolymer blended with epoxidized natural rubber. J Appl Polym Sci 112:1817–1825

    Article  CAS  Google Scholar 

  29. Mishra JK, Das CK (2001) Effect of interchain crosslinking on the shrinkability of the blends consisting of grafted poly (ethylene vinyl acetate) and polyurethane elastomer. J Mater Sci Lett 20:1877–1879

    Article  CAS  Google Scholar 

  30. Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20:3367–3381

    Article  CAS  Google Scholar 

  31. Huang W, Toh W (2000) Training two-way shape memory alloy by reheat treatment. J Mater Sci Lett 19:1549–1550

    Article  CAS  Google Scholar 

  32. Liu N, Huang WM, Phee SJ (2007) A secret garden of micro butterflies: phenomenon and mechanism. Surf Rev Lett 14:1187–1190

    Article  Google Scholar 

  33. Sun L, Huang WM, Wang CC, Zhao Y, Ding Z, Purnawali H (2011) Optimization of the shape memory effect in shape memory polymers. J Polym Sci A Polym Chem 49:3574–3581

    Article  CAS  Google Scholar 

  34. Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H, Zheng LX, Fan H, He CB (2012) Rubber-like shape memory polymeric materials with repeatable thermal-assisted healing function. Smart Mater Struct 21:115010

    Article  Google Scholar 

  35. Xie T, Xiao XC, Li JJ, Wang RM (2010) Encoding localized strain history through wrinkle based structural colors. Adv Mater 22:4390–4394

    Article  CAS  Google Scholar 

  36. Li J, Shim JM, Deng J, Overvelde JTB, Zhu XL, Bertoldi K, Yang S (2012) Switching periodic membranes via pattern transformation and shape memory effect. Soft Matter 8:10322–10328

    Article  CAS  Google Scholar 

  37. Li JJ, An YH, Huang R, Jiang HQ, Xie T (2012) Unique aspects of a shape memory polymer as the substrate for surface wrinkling. ACS Appl Mater Interfaces 4:598–603

    Article  CAS  Google Scholar 

  38. Zhao Y, Huang WM, Wang CC (2012) Thermo/chemo-responsive shape memory effect for micro/nano surface patterning atop polymers. Nanosci Nanotechnol Lett 4:862–878

    Article  CAS  Google Scholar 

  39. Liu N, Xie Q, Huang WM, Phee SJ, Guo NQ (2008) Formation of micro protrusion arrays atop shape memory polymer. J Micromech Microeng 18:027001

    Article  Google Scholar 

  40. Sun L, Huang WM (2010) Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6:4403–4406

    Article  CAS  Google Scholar 

  41. Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270

    Article  CAS  Google Scholar 

  42. PR China patent application No. 201210480325.5

  43. PR China patent application No. 201210206952.X

  44. Sun L, Huang WM (2010) Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in future. Mater Des 31:2684–2689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is partially supported by the China Postdoctoral Science Foundation (1721110233) and the Research Foundation for Scholars of Jiangsu University (1281110025), PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X.L., Huang, W.M. & Tan, H.X. Characterization of shape recovery via creeping and shape memory effect in ether-vinyl acetate copolymer (EVA). J Polym Res 20, 150 (2013). https://doi.org/10.1007/s10965-013-0150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0150-4

Keywords

Navigation