Skip to main content
Log in

Synthesis and characterization of polyvinyl alcohol based semi interpenetrating polymeric networks

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymeric networks in the form of hydrogels offer possibilities to achieve desirable combination of properties that are generally not available in a single polymeric material. With these objectives, the present work focus on the synthesis of polyvinyl alcohol (PVA) based novel semi-IPNs of varying compositions by redox polymerization method using N,N'-methylene bisacrylamide (MBA) as the crosslinker and acrylonitrile as the monomer. The prepared semi-IPNs have been examined for structural confirmation, by FTIR analysis. Crystalline features of the semi-IPNs were studied by XRD technique which revealed that crystallinity in the membrane was mainly due to PVA. The IPNs of various compositions have also been examined for their water sorption behavior and network parameters like average molecular weight between crosslinks (Mc) and crosslink density were calculated from water imbibition measurements. The kinetics and mechanism of water sorption process were studied and related kinetic parameters were evaluated. The DSC analysis of the prepared semi-IPNs was also performed and it was found that the gels showed well-defined thermal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ngadaonye JI, Geever LM, Cloonan MO, Higginbotham CL (2012) J Polym Res 19:9822

    Article  Google Scholar 

  2. Abd El-Mohdy HL, Ghanem S (2009) J Polym Res 16:1–10

    Article  CAS  Google Scholar 

  3. Nagireddy NR, Yallapu MM, Kokkarachedu V, Sakey R, Kanikireddy V (2011) J Polym Res 18:2285–2294

    Article  CAS  Google Scholar 

  4. Kuo SM, Chang SJ, Wang YJ (1999) J Polym Res 6:191–196

    Article  CAS  Google Scholar 

  5. Artyukhov AA, Shtilman MI, Kuskov AN, Fomina AP, Lisovyy DE, Golunova AS, Tsatsakis AM (2011) J Polym Res 18:667–673

    Article  CAS  Google Scholar 

  6. Kobayashi M, Hyu HS (2010) Materials 3:2753–2771

    Article  CAS  Google Scholar 

  7. Kim SJ, Park SJ, Chung TD, An KH, Kim SI (2003) J Appl Polym Sci 89:2041–2045

    Article  CAS  Google Scholar 

  8. Wang T, Turhan M, Guna Sekaran S (2004) Polym Int 53:911–918

    Article  CAS  Google Scholar 

  9. Park KR, Nho YC (2003) Radiat Phys Chem 67:361–365

    Article  CAS  Google Scholar 

  10. Lopergolo LC, Lugao AB, Catalani LH (2003) Polymer 44:6217–6222

    Article  CAS  Google Scholar 

  11. Abdeen MA, Elamer I (2010) Mater Des 31:808–815

    Article  Google Scholar 

  12. Bajaj P, Sreekumar TV, Sen K (2001) Polymer 42:1707–1718

    Article  CAS  Google Scholar 

  13. Qiu Y, Park K (2003) AAPS Pharm Sci Tech 3(4):51

    Google Scholar 

  14. Wang ZG, Wan LS, Xu ZK (2007) J Membr Sci 304:8

    Article  CAS  Google Scholar 

  15. Song X, Zheng S, Huang J, Zhu P, Guo Q (2000) J Mater Sci 35:5613–5619

    Article  CAS  Google Scholar 

  16. Jain E, Srivastava A, Kumar A (2009) J Mater Sci Mater Med 20:173–179

    Article  Google Scholar 

  17. Pal K, Banthia AK, Majumdar DK (2006) Trends Biomater Artif Organs 20:59–67

    Google Scholar 

  18. Mishra A, Choudhary N (2010) Trends Biomater Artif Organs 23:122–128

    Google Scholar 

  19. Pan YS, Xiong DS, Ma RY (2006) J Cent South Univ Technol 13:27–31

    Article  CAS  Google Scholar 

  20. Bajpai R, Katare R, Bajpai AK, Mishra S (2006) J Appl Polym Sci 100:2402–2408

    Article  Google Scholar 

  21. Bajpai R, Bajpai AK, Rajvaidya S (2005) J Macromol Sci Pure Appl Chem 42:1271–1285

    Article  Google Scholar 

  22. Gupta VB, Kothari VK (1997) In Manufactured Fiber Technology Chapman and Hall London p 225

  23. Bajpai AK, Shrivastava M (2002) J Macromol Sci Pure Appl Chem A39(7):667

    CAS  Google Scholar 

  24. Peppas NA, Franson NM (1983) J Poly Sci Polym Phys 21:983–997

    Article  CAS  Google Scholar 

  25. Di MA, Vaccaro AR, Lee JY, Denaro V, Lim MR (2005) Spine 30:S16–S22

    Article  Google Scholar 

  26. Wan LS, Xu ZK, Huang XJ, Huang XD, Yao K (2007) Acta Biomaterialia 3:183–190

    Article  CAS  Google Scholar 

  27. Bajpai R, Katare R, Bajpai AK, Mishra S (2006) J Mater Sci Mater Med 17:1305–1313

    Article  Google Scholar 

  28. Qiao Z, Xie Y, Zhu Y, Qian Y (1999) J Mater Chem 9:1001

    Article  CAS  Google Scholar 

  29. Gils PS, Ray D, Mohanta GP, Manavalan R, Sahoo P (2009) Int J Pharm Sci 1:44

    Google Scholar 

  30. Finch CA (1985) In Chemistry and Technology of Water Soluble Polymers Plenum Press New York Chapter 5:81

  31. Ding ZY, Akinbis JJ, Salogev R (1991) J Poly Sci Polym Phys 20:1035

    Article  Google Scholar 

  32. Brandrup J, Immergut EH (1967) Polymer Hand Book Wiley Interscience New York

Download references

Acknowledgement

The authors would like to acknowledge IUC-DAE Consortium for Scientific Research, Indore, (M.P.), India, for providing SEM, XRD and DSC facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti S. Deshpande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, D.S., Bajpai, R. & Bajpai, A.K. Synthesis and characterization of polyvinyl alcohol based semi interpenetrating polymeric networks. J Polym Res 19, 9938 (2012). https://doi.org/10.1007/s10965-012-9938-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9938-x

Keywords

Navigation