Skip to main content
Log in

RAFT synthesis of acrylic polymers containing diol or dioxane groups

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, an acrylate monomer containing two hydroxyl groups, 2,2-bis(hydroxymethyl)butyl acrylate (HBA), was successfully synthesized by acidic hydrolysis of the monomer precursor, (5-ethyl-2,2-dimethyl-1,3-dioxane-5-yl)methyl acrylate (EDMA), which was prepared by esterification reaction between 2,2-dimethyl-5-ethyl-5-hydroxymethyl-1,3-dioxane and acryloyl chloride. Subsequently, poly(HBA) containing pendant diol group was prepared either by direct reversible addition-fragmentation chain transfer (RAFT) polymerization of HBA or by RAFT polymerization of EDMA, followed by deprotection. The RAFT polymerization of both monomers was performed in dioxane using 2-(ethylthiocarbonothioylthio)-2-methyl propanoic acid (EMP) as the RAFT agent and 2,2′-azobis(isobutyronitrile) (AIBN) as the initiator. Kinetic studies demonstrated that the polymerization process of both monomers followed pseudo first-order kinetics with respect to the monomer concentrations. The molecular weight of the resulting polymer increased linearly with monomer conversion, while a low polydispersity was maintained throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oh JK, Siegwart DJ, Lee H, Sherwood G, Peteanu L, Hollinger JO, Kataoka K, Matyjaszewski K (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 129:5939–5945

    Article  CAS  Google Scholar 

  2. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  3. Wurm F, Klos J, Rader HJ, Frey H (2009) Synthesis and noncovalent protein conjugation of linear-hyperbranched PEG-poly(glycerol) α, ωn-telechelics. J Am Chem Soc 131:7954–7955

    Article  CAS  Google Scholar 

  4. Refojo MF (1965) Glyceryl methacrylate hydrogels. J Appl Polym Sci 9:3161–3170

    Article  Google Scholar 

  5. Steinhauer W, Hoogenboom R, Keul H, Moeller M (2010) Copolymerization of 2-hydroxyethyl acrylate and 2-methoxyethyl acrylate via RAFT: kinetics and thermoresponsive properties. Macromolecules 43:7041–7047

    Article  CAS  Google Scholar 

  6. Sun Y, Wan G, Wang B, Zhao J, Feng Y (2009) Mechanical properties of hydroxyl functionalized chlorinated polyethylene prepared by in situ chlorinating graft copolymerization. J Polym Res 16:165–172

    Article  CAS  Google Scholar 

  7. Dai J, Goh SH, Lee SY, Siow KS (1995) Miscibility and interpolymer complexation of poly(2-methyl-2-oxazoline) with hydroxyl-containing polymers. J Polym Res 2:209–215

    Article  CAS  Google Scholar 

  8. Babazadeh M, Edjlali L, Rashidian L (2007) Application of 2-hydroxyethyl methacrylate polymers in controlled release of 5-aminosalicylic acid as a colon-specific drug. J Polym Res 14:207–213

    Article  CAS  Google Scholar 

  9. Tsai MF, Lee YD, Long YC (2000) Synthesis of a polydimethylsiloxane-block-hydroxyl grafted acrylate prepolymer copolymer to improve the adhesion between silicone rubber and polyurethane by induced surface reconstruction. J Polym Res 7:73–79

    Article  CAS  Google Scholar 

  10. Guzmán J, Iglesias M (1997) Synthesis and polymerization of acrylic monomers with hydrophilic long side groups. Oxygen transport through water swollen membranes prepared from these polymers. Polymer 38:5227–5232

    Article  Google Scholar 

  11. Xiong L, Liang H, Wang R, Chen L (2011) A novel route for the synthesis of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) grafted titania nanoparticles via ATRP. J Polym Res 18:1017–1021

    Article  CAS  Google Scholar 

  12. Hirao A, Kitamura K, Takenaka K, Nakahama S (1993) Protection and polymerization of functional monomers. 18. Syntheses of well-defined poly (vinylphenol), poly [(vinylphenyl) methanol], and poly [2-(vinylphenyl) ethanol] by means of anionic living polymerization of styrene derivatives containing tert-butyldimethylsilyl ethers. Macromolecules 26:4995–5003

    Article  CAS  Google Scholar 

  13. Hirao A, Kato H, Yamaguchi K, Nakahama S (1986) Polymerization of monomers containing functional groups protected by trialkylsilyl groups. 5. Synthesis of poly(2-hydroxyethyl methacrylate) with a narrow molecular weight distribution by means of anionic living polymerization. Macromolecules 19:1294–1299

    Article  CAS  Google Scholar 

  14. Minegishi S, Tsuchida S, Sasaki M, Kameyama A, Kudo H, Nishikubo T (2002) Synthesis of polyphosphonates containing pendant chloromethyl groups by the polyaddition of bis(oxetane)s with phosphonic dichlorides. J Polym Sci, Part A: Polym Chem 40:3835–3846

    Article  CAS  Google Scholar 

  15. Kulshrestha AS, Gao W, Gross RA (2005) Glycerol copolyesters: Control of branching and molecular weight using a lipase catalyst. Macromolecules 38:3193–3204

    Article  CAS  Google Scholar 

  16. Uyama H, Yaguchi S, Kobayashi S (1999) Lipase-catalyzed polycondensation of dicarboxylic acid-divinyl esters and glycols to aliphatic polyesters. J Polym Sci, Part A: Polym Chem 37:2737–2745

    Article  CAS  Google Scholar 

  17. Zhang H, Ruckenstein E (2000) A novel successive route to well-defined water-soluble poly(2,3-dihydroxypropyl methacrylate) and amphiphilic block copolymers based on an osmylation reaction. Macromolecules 33:4738–4744

    Article  CAS  Google Scholar 

  18. Zou Y, Rossi NAA, Kizhakkedathu JN, Brooks DE (2009) Barrier capacity of hydrophilic polymer brushes to prevent hydrophobic interactions: Effect of graft density and hydrophilicity. Macromolecules 42:4817–4828

    Article  CAS  Google Scholar 

  19. Desai SD, Emanuel AL, Sinha VK (2003) Polyester polyol-based polyurethane adhesive; effect of treatment on rubber surface. J Polym Res 10:141–149

    Article  CAS  Google Scholar 

  20. Okano T, Katayama M, Shinohara I (1978) The influence of hydrophilic and hydrophobic domains on water wettability of 2-hydroxyethyl methacrylate-styrene copolymers. J Appl Polym Sci 22:369–377

    Article  CAS  Google Scholar 

  21. Chiellini E, Bemporad L, Solaro R (1994) Novel hydroxyl containing polyesters and polycarbonates by the copolymerization of glycidyl ethers of protected alditols and cyclic anhydrides. J Bioact Compat Pol 9:152

    Article  CAS  Google Scholar 

  22. Mori H, Hirao A, Nakahama S (1994) Protection and polymerization of functional monomers. 21. Anionic living polymerization of (2,2-dimethyl-1,3-dioxolan-4-yl)methyl methacrylate. Macromolecules 27:35–39

    Article  CAS  Google Scholar 

  23. Zhang Z, Liu G, Bell S (2000) Synthesis of poly(solketal methacrylate)-block-poly (2-(dimethylamino) ethyl methacrylate) and preparation of nanospheres with cross-linked shells. Macromolecules 33:7877–7883

    Article  CAS  Google Scholar 

  24. Guzmán J, Iglesias MT, Riande E (1997) Synthesis and kinetics of polymerization of acrylic and methacrylic monomers containing 1,3-dioxane groups in their structure. J Polym Sci, Part A: Polym Chem 35:1125–1132

    Article  Google Scholar 

  25. Godwin A, Hartenstein M, Müller AHE, Brocchini S (2001) Narrow molecular weight distribution precursors for polymer–drug conjugates. Angew Chem Int Ed 40:594–597

    Article  CAS  Google Scholar 

  26. Amado E, Augsten C, Mäder K, Blume A, Kressler J (2006) Amphiphilic water soluble triblock copolymers based on poly(2,3-dihydroxypropyl methacrylate) and poly(propylene oxide): Synthesis by atom transfer radical polymerization and micellization in aqueous solutions. Macromolecules 39:9486–9496

    Article  CAS  Google Scholar 

  27. Rostami Daronkola M, Semsarzadeh M (2008) Study of macroinitiator efficiency and microstructure-thermal properties in the atom transfer radical polymerization of methyl methacrylate. J Polym Res 15:403–411

    Article  CAS  Google Scholar 

  28. Li Y, Armes SP (2010) RAFT synthesis of sterically stabilized methacrylic nanolatexes and vesicles by aqueous dispersion polymerization. Angew Chem Int Ed 49:4042–4046

    Article  CAS  Google Scholar 

  29. Goto A, Sato K, Tsujii Y, Fukuda T, Moad G, Rizzardo E, Thang SH (2001) Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 34:402–408

    Article  CAS  Google Scholar 

  30. Soriano-Moro J, Percino M, Chapela V, Guerrero-Santos R (2011) Using dilatometry in the reversible addition fragmentation transfer polymerization of N-(S)-(−)-α-methylbenzyl methacryloylamine. J Polym Res 18:1821–1827

    Article  CAS  Google Scholar 

  31. Liu Q, Li S, Zhang P, Lan Y, Lu M (2007) Facile preparation of PNIPAM gel with improved deswelling kinetics by using 1-dodecanethiol as chain transfer agent. J Polym Res 14:397–400

    Article  Google Scholar 

  32. Rossi NAA, Zou Y, Scott MD, Kizhakkedathu JN (2008) RAFT synthesis of acrylic copolymers containing poly(ethylene glycol) and dioxolane functional groups: toward well-defined aldehyde containing copolymers for bioconjugation. Macromolecules 41:5272–5282

    Article  CAS  Google Scholar 

  33. Convertine AJ, Lokitz BS, Vasileva Y, Myrick LJ, Charles W, Lowe AB, McCormick CL (2006) Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules 39:1724–1730

    Article  CAS  Google Scholar 

  34. Faulkner S, Kataky R, Parker D, Teasdale A (1995) Lithium selective ionophores based on pendant arm substituted crown ethers. J Chem Soc, Perkin Trans 2:1761–1769

    Google Scholar 

  35. Favier A, Charreyre MT (2006) Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process. Macromol Rapid Commun 27:653–692

    Article  CAS  Google Scholar 

  36. Moad G, Chiefari J, Chong YK, Krstina J, Mayadunne RTA, Postma A, Rizzardo E, Thang SH (2000) Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym Int 49:993–1001

    Article  CAS  Google Scholar 

  37. Peklak AD, Butté A, Storti G, Morbidelli M (2006) Gel effect in the bulk reversible addition-fragmentation chain transfer polymerization of methyl methacrylate: modeling and experiments. J Polym Sci, Part A: Polym Chem 44:1071–1085

    Article  CAS  Google Scholar 

  38. Konkolewicz D, Hawkett BS, Gray-Weale A, Perrier S (2009) RAFT polymerization kinetics: How long are the cross-terminating oligomers? J Polym Sci, Part A: Polym Chem 47:3455–3466

    Article  CAS  Google Scholar 

  39. Jitchum V, Perrier S (2007) Living radical polymerization of isoprene via the RAFT process. Macromolecules 40:1408–1412

    Article  CAS  Google Scholar 

  40. Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410

    Article  CAS  Google Scholar 

  41. Favier A, Charreyre MT, Pichot C (2004) A detailed kinetic study of the RAFT polymerization of a bi-substituted acrylamide derivative: Influence of experimental parameters. Polymer 45:8661–8674

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Open Project of Hunan Provincial University Innovation Platform (10K066) and International Joint Research Program of Hunan Province (2010WK2009) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Xu, J., Gao, Y. et al. RAFT synthesis of acrylic polymers containing diol or dioxane groups. J Polym Res 19, 9895 (2012). https://doi.org/10.1007/s10965-012-9895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9895-4

Keywords

Navigation