Skip to main content
Log in

Preparation and properties of chitosan/clay (nano)composites: a silanol quaternary ammonium intercalated clay

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Chitosan/clay (nano)composites were prepared by using a special quaternary ammonium intercalating agent coupled with a silanol group to facilitate the organic clay formation. Exfoliated clay in the chitosan matrix was attained at the higher intercalant dosages through X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses. Optical transmittance for the (nano)composites increased slightly with increasing the amount of intercalants in the clays. In light of the hydrophobic component on the intercalant and the effective clay content, the interfacial interaction between chitosan and modified clay may not be strong enough to render higher mechanical properties, even though the partially exfoliated clays were achieved to provide high interfacial area for the dispersed phase and the matrix. An optimum Young’s modulus was thus found for (nano)composites using modified clay at a medium dosage of intercalant, which resulted from the balance of the dispersion status and interfacial interaction. This outcome indicated high dispersion of modified clay may not guarantee high mechanical properties of (nano)composites. The antimicrobial property of chitosan against Escherichia coli (E. coli) increased further with the addition of modified clays, in which the intercalant exhibiting the antimicrobial function. The modified clay at an optimum dosage of modifier to balance the mechanical properties and antimicrobial property was attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. As’habi L, Jafari SH, Khonakdar HA, Baghaei B (2011) J Polym Res 18:197–205

    Article  Google Scholar 

  2. Arora A, Choudhary V, Sharma DK (2011) J Polym Res 18:843–857

    Article  CAS  Google Scholar 

  3. Tunc S, Duman O (2010) Appl Clay Sci 48:414–424

    Article  CAS  Google Scholar 

  4. Tunc S, Duman O (2011) LWT-Food Sci Technol 44:465–472

    Article  CAS  Google Scholar 

  5. Rao YQ (2007) Polymer 48:5369–5375

    Article  CAS  Google Scholar 

  6. Tunc S, Angellier H, Cahyana Y, Chalier P, Gontard N, Gastaldi E (2007) J Membrane Sci 289:159–168

    Article  CAS  Google Scholar 

  7. Kweon D-K, Cha D-S, Park H-J, Lim S-T (2007) J Appl Polym Sci 78:986–993

    Article  Google Scholar 

  8. Darder M, Colilla M, Ruiz-Hitzky E (2003) Chem Mater 15:3774–3780

    Article  CAS  Google Scholar 

  9. Wang X, Du Y, Yang J, Wang X, Shi X, Hu Y (2006) Polymer 47:6738–6744

    Article  CAS  Google Scholar 

  10. Han Y-S, Lee S-H, Choi KH, Park I (2010) J Phys Chem Solids 71:464–467

    Article  CAS  Google Scholar 

  11. Wang X, Du Y, Yang J, Tang Y, Luo J (2008) J Biomed Mater Res 84A:384–390

    Article  CAS  Google Scholar 

  12. Ngah WSW, Teong LC, Hanafiah MAKM (2011) Carbohydr Polym 83:1446–1456

    Article  Google Scholar 

  13. Xu Y, Ren X, Hanna MA (2006) J Appl Polym Sci 99:1684–1691

    Article  CAS  Google Scholar 

  14. Tan W, Zhang Y, Szeto YS, Liao L (2008) Comp Sci Technol 68:2917–2921

    Article  CAS  Google Scholar 

  15. Tang C, Chen N, Zhang Q, Wang K, Fu Q, Zhang X (2009) Polym Degrad Stab 94:124–131

    Article  CAS  Google Scholar 

  16. Szazdi L, Pukanszky JB, Vancso GJ, Pukanszky B (2006) Polymer 47:4638–4648

    Article  CAS  Google Scholar 

  17. Lai S-M, Chen C-M (2007) Eur Polym J 43:2254–2264

    Article  CAS  Google Scholar 

  18. Chen W-C, Lai S-M, Chen C-M (2008) Polym Int 57:515–522

    Article  CAS  Google Scholar 

  19. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  20. ASTM D638-08 Standard Test Method for Tensile Properties of Plastics (2009) Annual Book of ASTM Standards 08.01:50–65

    Google Scholar 

  21. ASTM E2149-01 Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions (2009) Annual Book of ASTM Standards 11.05:673–676

  22. Gunister E, Pestreli D, Unlu CH, Atici O, Gungor N (2007) Carbohydr Polym 67:358–365

    Article  Google Scholar 

  23. Liao H-T, Wu C-S (2005) J Appl Polym Sci 97:397–404

    Article  CAS  Google Scholar 

  24. Chen P, Zhang L (2006) Biomacromolecules 7:1700–1706

    Article  CAS  Google Scholar 

  25. Martucci JF, Ruseckaite RA (2010) Polym-Plast Technol Eng 49:581–588

    Article  CAS  Google Scholar 

  26. Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX (2005) Polym Degrad Stab 90:123–131

    Article  CAS  Google Scholar 

  27. Zheng JP, Li P, Ma YL, Yao KD (2002) J Appl Polym Sci 86:1189–1194

    Article  CAS  Google Scholar 

  28. Martucci JF, Vazquez A, Ruseckaite RA (2007) J Therm Anal Calorim 89:117–122

    Article  CAS  Google Scholar 

  29. Wang S, Zhang Y, Ren W, Zhang Y, Lin H (2005) Polym Test 24:766–774

    Article  CAS  Google Scholar 

  30. Deng Y, Gu A, Fang Z (2004) Polym Int 53:85–91

    Article  CAS  Google Scholar 

  31. Lai S-M, Ti K-T (2007) Int Polym Process 12:502–511

    Article  Google Scholar 

  32. De Britto D, Campana-Filho SP (2004) Polym Degrad Stab 84:353–361

    Article  Google Scholar 

  33. Lai S-M, Yang AJ-M, Chen W-C, Hsiao JF (2006) Polym-Plast Technol Eng 45:997–1003

    Article  CAS  Google Scholar 

  34. Rhim J-W, Hong S-K, Park H-M, Ng PKW (2006) J Agric Food Chem 54:5814–5822

    Article  CAS  Google Scholar 

  35. Callister Jr WD (2006) Materials science and engineering, an introduction, 7th edition; Chap. 8, Wiley

  36. Fornes TD, Paul DR (2003) Polymer 44:4993–5013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The grant-in-aid from R.O.C government under NSC 95-2622-E-197-005-CC3 is greatly acknowledged. Financial support from Taiwan surfactant is acknowledged. Helpful discussions on TEM discussion from Prof. J.-Y. Lai and Dr. Y.-H. Su in Chung-Yuan Christian University and on clay modification procedure from Prof. C.-S. Wu at the Department of Chemical and Biochemical Engineering, Kao Yun University, TAIWAN are greatly appreciated. We are also grateful to Prof. Li-Chien Chang at School of Pharmacy, National Defense Medical Center, Taiwan for his discussion on antimicrobial properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-M. Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, FC., Lai, SM., Hsieh, IC. et al. Preparation and properties of chitosan/clay (nano)composites: a silanol quaternary ammonium intercalated clay. J Polym Res 19, 9781 (2012). https://doi.org/10.1007/s10965-011-9781-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9781-5

Keywords

Navigation