Skip to main content
Log in

Threshold silver concentration for facilitated olefin transport in polymer/silver salt membranes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The existence of a threshold concentration for silver ions has been observed in solid-state facilitated transport membranes comprising silver salt and a polymer matrix. The threshold silver concentration for facilitated olefin transport through the membranes was systematically investigated, with particular attention paid to the relative interactions of polymer/silver ions and of silver ions/counteranions. This behavior was assessed for membranes consisting of silver salt and polymer matrix with and without various ligands, specifically, phthalate, amide, ether, ketone, ester, or C = C bonds. The threshold concentration of silver salt for facilitated olefin transport was found to be strongly dependent on the polymeric ligand. With respect to the polymer, the determined order of highest threshold concentration capacity to lowest capacity is listed in the following order: phthalate > amide > ether >ketone ≈ C = C bond > ester > no ligand. This dependence of the threshold concentration on the polymeric ligand is correlated with both the interaction strength of silver ions with the different ligands and that with their counteranions. It has been concluded that when the former interaction is weak and, consequently, the latter interaction is strong, the threshold concentration for facilitated olefin transport is low, and vice versa. These interactions were characterized using X-ray photoelectron spectroscopy (XPS), FT-Raman spectroscopy, and theoretical ab initio calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Safarik DJ, Eldridge RB (1998) Ind Eng Chem Res 37:2571–2581

    Article  CAS  Google Scholar 

  2. Meindersma GW, Podt AJG, Klaren MB, De Haan AB (2006) Chem Eng Commun 193:1384–1396

    Article  CAS  Google Scholar 

  3. Meindersma GW, Podt AJG, De Haan AB (2005) Fuel Proc Tech 87:59–70

    Article  Google Scholar 

  4. Burns RL, Koros WJ (2003) J Membr Sci 211:299–309

    Article  CAS  Google Scholar 

  5. Suzuki Y, Nishide H, Tsuchida E (2000) Macromolecules 33:2530–2534

    Article  CAS  Google Scholar 

  6. Nishide H, Tsukahara Y, Tsuchida E (1998) J Phys Chem B 102:8766–8770

    Article  CAS  Google Scholar 

  7. Wu L-G, Shen J-N, Chen H-L, Gao C-J (2006) Desalination 193:313–320

    Article  CAS  Google Scholar 

  8. Shen J-N, Wu L-G, Chen H-L, Gao C-J (2005) Sep Pur Tech 45:103–108

    Article  CAS  Google Scholar 

  9. Hu W, Tanioka A (2001) J Phys Chem B 105:4629–4635

    Article  CAS  Google Scholar 

  10. Hu W, Tanioka A, Imase T, Kawauchi S, Wang H, Suma Y (2000) J Phys Chem B 104:4867–4872

    Article  CAS  Google Scholar 

  11. Bryant DL, Noble RD, Koval CA (1997) J Membr Sci 127:161–170

    Article  CAS  Google Scholar 

  12. Yamaguchi T, Kurita H, Nakao S (1999) J Phys Chem B 103:1831–1835

    Article  CAS  Google Scholar 

  13. Manley DS, Williamson DL, Noble RD, Koval CA (1996) Chem Mater 8:2595–2600

    Article  CAS  Google Scholar 

  14. Kim JH, Min BR, Kim CK, Won J, Kang YS (2001) Macromolecules 34:6052–6055

    Article  CAS  Google Scholar 

  15. Kim JH, Min BR, Kim CK, Won J, Kang YS (2002) Macromolecules 35:5250–5255

    Article  CAS  Google Scholar 

  16. Kim JH, Min BR, Won J, Kang YS (2002) Chem Eur J 8:650–654

    Article  CAS  Google Scholar 

  17. Kim JH, Min BR, Won J, Kang YS (2003) Macromolecules 36:4577–4581

    Article  CAS  Google Scholar 

  18. Pinnau I, Toy LG, Casillas C (1997) US Patent 5,670,051

  19. Sunderrajan S, Freeman BD, Hall CK, Pinnau I (2001) J Membr Sci 182:1–12

    Article  CAS  Google Scholar 

  20. Pinnau I, Toy LG (2001) J Membr Sci 184:39–48

    Article  CAS  Google Scholar 

  21. Liu L, Feng X, Chakma A (2004) Sep Pur Tech 38:255–263

    Article  CAS  Google Scholar 

  22. Kim JH, Min BR, Won J, Joo SH, Kim HS, Kang YS (2003) Macromolecules 36:6183–6188

    Article  CAS  Google Scholar 

  23. Hess S, Staudt-Bickel C, Lichtenthaler RN (2006) J Membr Sci 275:52–60

    Article  CAS  Google Scholar 

  24. Morisato A, He Z, Pinnau I, Merkel TC (2002) Desalination 145:347–351

    Article  CAS  Google Scholar 

  25. Merkel TC, He Z, Morisato A, Pinnau I (2003) Chem Commun 1596–1597

  26. Heß S, Scharfenberger G, Staudt-Bickel C, Lichtenthaler RN (2002) Desalination 145:359–364

    Article  Google Scholar 

  27. Kim JH, Won J, Kang YS (2004) J Membr Sci 237:199–202

    Article  CAS  Google Scholar 

  28. Kim JH, Won J, Kang YS (2004) J Polym Sci B Polym Phys 42:2263–2269

    Article  CAS  Google Scholar 

  29. Kim JH, Won J, Kang YS (2004) J Membr Sci 241:403–407

    Article  CAS  Google Scholar 

  30. Kang SW, Kim JH, Oh KS, Won J, Char K, Kim HS, Kang YS (2004) J Membr Sci 236:163–169

    Article  CAS  Google Scholar 

  31. Becke ADJ (1993) Chem Phys 98:5648

    CAS  Google Scholar 

  32. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  33. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, Chapter 4

    Google Scholar 

  34. Hay PJ, Wadt WRJ (1985) Chem Phys 82:270

    CAS  Google Scholar 

  35. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Int J Quantum Chem S13:225

    Google Scholar 

  36. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd ed. Gaussian Inc, Pittsburg, p 166

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Gordon MH, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.6. Gaussian, Inc, Pittsburgh

  38. Jiang D, Dai S (2008) J Phys Chem B 112:10202–10206

    Article  CAS  Google Scholar 

  39. Huang JF, Luo H, Liang C, Jiang D, Dai S (2008) Ind Eng Chem Res 47:881–888

    Article  CAS  Google Scholar 

  40. MacCallum JR, Vincent CA (1987) Polymer electrolyte reviews, Elsevier Applied Science, London and New York, p 91

  41. Madaeni SS, Hoseini S (2009) J Polym Res 16:591–599

    Article  CAS  Google Scholar 

  42. Schantz S, Torell LM, Stevens JRJ (1991) Chem Phys 94:6862

    CAS  Google Scholar 

  43. Ferry A, Jacobsson P, Torell LM (1995) Electrochim Acta 40:2369–2373

    Article  CAS  Google Scholar 

  44. Chintapalli S, Frech R (1998) Electrochim Acta 43:1395–1400

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (20100022255) Y. S. Kang also acknowledges Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded from the Ministry of Education, Science and Technology (MEST) of Korea for the Center for Next Generation Dye-sensitized Solar Cells (No. 2011-0001055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Wook Kang or Yong Soo Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Kang, S.W. & Kang, Y.S. Threshold silver concentration for facilitated olefin transport in polymer/silver salt membranes. J Polym Res 19, 9753 (2012). https://doi.org/10.1007/s10965-011-9753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9753-9

Keyword

Navigation