Skip to main content
Log in

Maleic acid–2-vinylnaphthalene copolymer in aqueous solution: investigation of the dissociation and fluorescence quenching

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The alternating maleic acid–2-vinylnaphthalene copolymer was synthetized and characterized. The amphiphilic polyelectrolyte adopts a pseudomicellar conformation in aqueous solution. The hydrophobic microdomains are formed by the naphthalene groups and the water solubility is conferred by the hydrophilic maleic acid groups. The two-step dissociation of polyelectrolyte was studied by potentiometric titrations and the conformational transition was investigated by viscometry and fluorescence techniques. By increasing the neutralization degree over an αN ~ 0.2, an expansion of the polymer coil takes place from a compact to a loose or extended form, but the hydrophobic microdomains formed by the naphthalene groups are present on the whole neutralization range. The investigation of the naphthalene fluorescence quenching by different transition metal ions shows an extremely high quenching efficiency by Cu2+ ions. The ionic strength influences the polyelectrolyte conformation and the fluorescence quenching process. The maleic acid–2-vinylnaphthalene copolymer can be used for the solubilization of polynuclear aromatic compounds or other sparingly water-soluble organic compounds or for the design of fluorescent sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schillén K, Anghel DF, Miguel MG, Lindman B (2000) Langmuir 16:10528–10539

    Article  Google Scholar 

  2. Costa T, Miguel MG, Lindman B, Schillén K, De Melo JSS (2005) J Phys Chem B 109:11478–11492

    Article  CAS  Google Scholar 

  3. Morishima Y, Kobayashi T, Nozakura S, Webber SE (1987) Macromolecules 20:807–813

    Article  CAS  Google Scholar 

  4. Morishima Y, Lim HS, Nozakura S, Sturtevant JL (1989) Macromolecules 22:1148–1154

    Article  CAS  Google Scholar 

  5. Zeng W, Shirota Y (1989) Polym J 21:511–518

    Article  CAS  Google Scholar 

  6. Bai F, Chang CH, Weber SE (1986) Macromolecules 19:588–595

    Article  CAS  Google Scholar 

  7. Bai F, Chang CH, Weber SE (1987) In: ACS Symposium Series 358; DC: American Chemical Society, Washington

  8. Bai F, Weber SE (1988) Macromolecules 21:628–633

    Article  CAS  Google Scholar 

  9. Nowakowska M, White B, Guillet JE (1989) Macromolecules 22:3903–3908

    Article  CAS  Google Scholar 

  10. Chen M, Ghiggno KP, Mau AWH, Sasse WHF, Thang SH, Wilson GJ (2005) Macromolecules 38:3475–3481

    Article  CAS  Google Scholar 

  11. Webber SE (1990) Chem Rev 90:1469–1482

    Article  CAS  Google Scholar 

  12. Nowakowska M, Karewicz A, Kłos M, Zapotoczny S (2003) Macromolecules 36:4134–4139

    Article  CAS  Google Scholar 

  13. Nowakowska M, White B, Guillet JE (1989) Macromolecules 22:2317–2324

    Article  CAS  Google Scholar 

  14. Zapotoczny S, Golonka M, Nowakowska M (2005) Macromol Rapid Commun 26:1049–1054

    Article  CAS  Google Scholar 

  15. Zapotoczny S, Golonka M, Nowakowska M (2008) Langmuir 24:5868–5876

    Article  CAS  Google Scholar 

  16. Cazé C, Decroix JC, Louchuex C, Nicco A (1973) Bull Soc Chim Fr 11:2977–2981

    Google Scholar 

  17. Chitanu GC, Popescu I, Carpov A (2005) Rev Roum Chim 50:589–599

    CAS  Google Scholar 

  18. Nanasawa M, Hu L, Vogl O (1986) Polym J 18:681–687

    Article  CAS  Google Scholar 

  19. Saad GR, Morsi RE, Mohammady SZ, Elsabee MZ (2008) J Polym Res 15:115–123

    Article  CAS  Google Scholar 

  20. Fox RB, Price TR, Cozzens RF, Echols WH (1974) Macromolecules 7:937–941

    Article  CAS  Google Scholar 

  21. Itoh Y, Nakada M, Hachimori A, Webber SE (1993) Macromolecules 26:1941–1946

    Article  CAS  Google Scholar 

  22. Bianchi E, Chiferi A, Parodi R, Rampone R, Tealdi A (1970) J Phys Chem 74:1050–1056

    Article  CAS  Google Scholar 

  23. Chitanu GC, Rinaudo M, Desbrières J, Milas M, Carpov A (1999) Langmuir 15:4154156

    Article  Google Scholar 

  24. Sauvage E, Amos DA, Antalek B, Schroeder KM, Tan JS, Plucktaveesah N (2004) J Polym Sci Part B: Polym Phys 42:3571–3583

    Article  CAS  Google Scholar 

  25. Osaki T, Werner C (2003) Langmuir 19:5787–5793

    Article  CAS  Google Scholar 

  26. Dubin PL, Strauss UP (1970) J Phys Chem 74:2842–2847

    Article  CAS  Google Scholar 

  27. Cade D, Ramus E, Rinaudo M, Auzély-Velty R, Delair T, Hamaide T (2004) Biomacromolecules 5:922–927

    Article  CAS  Google Scholar 

  28. Ohno N, Sugai S (1990) J Macromol Sci-Chem A27:861–673

    CAS  Google Scholar 

  29. Kitano T, Kawaguchi S, Ito K, Minakata A (1987) Macromolecules 20:1598–1606

    Article  CAS  Google Scholar 

  30. Sugai S, Ohno N (1980) Biophys Chem 11:387–395

    Article  CAS  Google Scholar 

  31. Reinhardt S, Steinert V, Werner K (1996) Eur Polym J 32:939–942

    Article  CAS  Google Scholar 

  32. Kawaguchi S, Kitano T, Ito K (1991) Macromolecules 24:6030–6036

    Article  CAS  Google Scholar 

  33. Hirose Y, Onodera M, Kawaguchi S, Ito K (1995) Polym J 27:519–528

    Article  CAS  Google Scholar 

  34. Delben F, Paoletti S, Porasso RD, Benegas JC (2006) Macromol Chem Phys 207:2299–2310

    Article  CAS  Google Scholar 

  35. Kalyanasundaram K, Thomas JK (1977) J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  36. Salamanca CH, Barraza RG, Acevedo B, Olea AF (2007) J Chil Chem Soc 52:1115–1119

    Article  CAS  Google Scholar 

  37. De Costa MDP, Jayasinghe WAPA (2004) J Photochem Photobiol A Chem 162:591–598

    Article  Google Scholar 

  38. Cao T, Yin W, Webber SE (1994) Macromolecules 27:7459–7464

    Article  CAS  Google Scholar 

  39. Oikonomou EK, Bokias G, Kallitsis JK (2008) J Polym Sci Pol Phys 46:1149–1158

    Article  CAS  Google Scholar 

  40. Kavlak S, Kaplan Can H, Guner A (2004) J Appl Polym Sci 92:2698–2705

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of National Center for Programs Management (CNMP) Romania, project no. 31-014/2007-2010 (NANOPROTECT), is gratefully acknowledged.

D.M.S. acknowledges the financial support of European Social Fund—“Cristofor I. Simionescu” Postdoctoral Fellowship Programme (ID POSDRU/89/1.5/S/55216), Sectoral Operational Programme Human Resources Development 2007e2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Popescu.

Additional information

Dedicated to the memory of Dr. Gabrielle Charlotte Chitanu (1948–2010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popescu, I., Airinei, A., Suflet, D.M. et al. Maleic acid–2-vinylnaphthalene copolymer in aqueous solution: investigation of the dissociation and fluorescence quenching. J Polym Res 18, 2195–2203 (2011). https://doi.org/10.1007/s10965-011-9630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9630-6

Keywords

Navigation