Skip to main content
Log in

Crystallinity of biodegradable polymers reinforced with functionalized carbon nanotubes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Well-dispersed multiwall carbon nanotubes (MWCNTs) were prepared by grafting poly(L-lactide-co-ε-caprolactone) (PLACL) biodegradable copolymer onto the sidewall of hydroxylated MWCNTs using oligomeric L-lactide (LA) and ε-caprolactone (CL). After preparation of MWCNT/PLACL composites, the effect of functionalized MWCNTs on crystallinity of PLACL was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and polarized light optical microscopy (POM). The surface functionalization effectively improved the dispersion and adhesion of MWCNTs which acted as reinforcing filler in the PLACL polymer matrix and hence improved the physical and thermomechanical properties of the nanocomposites. The glass transition temperature (T g) and the crystallinity of nanocomposites decreased in comparison with those of neat PLACL when the concentration of functionalized MWCNTs in nanocomposites was 0.5 wt%. With further increment in concentration of functionalized MWCNTs, the T g of composites increased until the T g of neat PLACL, and also the crystallinity of composites increased. The functionalized MWCNTs have no significant effect on the melting point of nanocomposites. The MWCNTs acted as heterogeneous nucleation points and increased the lamella size and therefore the crystallinity of PLACL. Furthermore, the larger agglomerated clusters of both kinds of MWCNTs (i.e., MWCNT-grafted-PLACL and pristine MWCNTs) are more effective than small clusters as nucleation points for growing the spherulites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Dai H (2002) Acc Chem Res 35:1035–1044

    Article  CAS  Google Scholar 

  3. Ajayan PM, Charlier JC, Rinzler AG (1999) Proc Natl Acad Sci U S A 96:14199–14200

    Article  CAS  Google Scholar 

  4. Coleman JN, Cadek M, Blake R, Nikolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) Adv Funct Mater 14(8):791–798

    Article  CAS  Google Scholar 

  5. Kovtyukhova NI, Mallouk TE, Pan L, Dickey EC (2003) J Am Chem Soc 125:9761–9769

    Article  CAS  Google Scholar 

  6. Martin BR, St Angelo SK, Mallouk TE (2002) Adv Funct Mater 12:759–765

    Article  CAS  Google Scholar 

  7. Kong H, Gao C, Yan D (2004) J Am Chem Soc 126:412–413

    Article  CAS  Google Scholar 

  8. Qian D, Dickey EC, Andrew R, Rantell T (2000) Appl Phys Lett 76:2868–2870

    Article  CAS  Google Scholar 

  9. Kumar S, Dang TD, Arnold FE, Bhattacharyya AR, Min BG, Zhang X et al (2002) Macromol 35:9039–9043

    Article  CAS  Google Scholar 

  10. Qin SH, Qin DQ, Ford WT, Herrera JE, Resasco DE, Bachilo SM et al (2004) Macromol 37:3965–3967

    Article  CAS  Google Scholar 

  11. Zengin H, Zhou W, Jin J, Czerw R, Smith DW Jr, Echegoyen L et al (2002) Adv Mater 14:1480–1483

    Article  CAS  Google Scholar 

  12. Song CX, Sun HF, Feng XD (1987) Polym J 19:485–491

    Article  CAS  Google Scholar 

  13. Tomihata K, Suzuki K, Oka T, Ikada Y (1998) Polym Degrad Stab 59:13–18

    Article  CAS  Google Scholar 

  14. den Dunnen WFA, Schakenraad JM, Zondervan GJ, Pennings AJ, van der Lei B, Robinson PH (1993) J Mater Sci Mater Med 4:521–525

    Article  Google Scholar 

  15. Kricheldorf HR, Saunders IK, Stricker A (2000) Macromol 33:702–709

    Article  CAS  Google Scholar 

  16. Duda A, Biela T, Libiszowski J, Penczek S, Dubois P, Mecerreyes D et al (1998) Polym Degrad Stab 59:215–222

    Article  CAS  Google Scholar 

  17. Pantiru M, Iojoiu C, Hamaide T, Delolme F (2004) Polym Int 53:506–514

    Article  CAS  Google Scholar 

  18. Hiljanen-Vainio MP, Orava RA, Seppala JV (1997) J Biomed Mater Res 34:39–46

    Article  CAS  Google Scholar 

  19. Lu XL, Cai W, Gao ZY (2008) J Appl Poly Sci 108:1109–1115

    Article  CAS  Google Scholar 

  20. Mitchell CA, Krishnamoorti R (2007) Macromol 40:1538–1545

    Article  CAS  Google Scholar 

  21. Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA (2006) J Phys Chem B 110:12910–12915

    Article  CAS  Google Scholar 

  22. Wu CS, Liao HT (2007) Polymer 48:4449–4458

    Article  CAS  Google Scholar 

  23. Coleman JN, Khan U, Gun’ko YK (2006) Adv Mater 18:689–706

    Article  CAS  Google Scholar 

  24. Zhu J, Peng H, Macias FR, Margreve JL, Khabashesku VN, Imam AM et al (2004) Adv Func Mater 14(7):643–648

    Article  CAS  Google Scholar 

  25. Tsuji H, Kawashima Y, Takikaw H, Tanaka S (2007) Polymer 48:4213–4225

    Article  CAS  Google Scholar 

  26. Feng JT, Cai W, Sui JH, Li ZG, Wan JQ, Nabipour Chakoli A (2008) Polymer 49:4989–4994

    Article  CAS  Google Scholar 

  27. Nabipour Chakoli A, Cai W, Feng JT, Sui JH (2009) Int J Mod Phys B 23(7):1401–1407

    Article  Google Scholar 

  28. Feng JT, Sui JH, Nabipour Chakoli A, Cai W (2009) Int J Mod Phys B 23(7):1503–1509

    Article  CAS  Google Scholar 

  29. Miyata T, Masuko T (1997) Polymer 38:4003–4009

    Article  CAS  Google Scholar 

  30. Meek MF, Jansen K, Steendam R, Oeveren WV, Wachem PB, Luyn MJA (2003) J Biomed Mater Res A 68A(1):43–51

    Article  Google Scholar 

  31. Armentano I, Dottori M, Puglia M, KennyJ M (2008) J Mater Sci Mater Med 19:2377–2387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellent Youth Foundation of Heilongjiang Province of China (No. JC200715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakoli, A.N., Sui, J., Amirian, M. et al. Crystallinity of biodegradable polymers reinforced with functionalized carbon nanotubes. J Polym Res 18, 1249–1259 (2011). https://doi.org/10.1007/s10965-010-9527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9527-9

Keywords

Navigation