Skip to main content

Advertisement

Log in

A reactive modifier that enhances the thermal mechanical properties of epoxy resin through the formation of multiple hydrogen-bonded network

  • Short Communication
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we synthesized a reactive modifier [DOPO-tris(azetidine-2,4-dione)], terminated with three azetidine-2,4-dione functional groups, from [(9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-yl)tris(4-aminophenyl)methane; DOPO-triamine] and [4-isocyanato-4′-(3,3-dimethyl-2,4-dioxo-acetidino)diphenylmethane; IDD]. We embedded this reactive modifier, which contains multiple hydrogen bond donor and acceptor units, into epoxy resins to promote intermolecular interactions and to tailor its flexibility through the formation of unique pseudo-crosslinked polymer networks. The resulted epoxy resins were found to exhibit glass transition temperature as high as 187 °C and excellent flame retardancy with limited oxygen index (LOI) values around 38. Meanwhile, the dynamic mechanical analysis (DMA) of epoxy systems increases from 0.67 to 2.13 GPa for storage modulus and 0.73–1.67 GPa for loss modulus at 100 °C. Incorporation of reactive modifier into epoxy networks with noncovalent interactions via thermosetting blend was demonstrated to be an effective way to enhance the thermal and physical properties simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

References

  1. Lee H, Neville K (1982) Handbook of epoxy resins. McGraw-Hill, New York

    Google Scholar 

  2. Jeng RJ, Lo GS, Chen CP, Liu YL, Hsiue GH, Su WC (2003) Polym Adv Technol 14:147–156

    Article  CAS  Google Scholar 

  3. Chan YN, Juang TY, Liao YL, Dai SA, Lin JJ (2008) Polymer 49:4796–4801

    Article  CAS  Google Scholar 

  4. Jeng RJ, Wang JR, Lin JJ, Liu YL, Chiu YS, Su WC (2001) J Appl Polym Sci 82:3526–3538

    Article  CAS  Google Scholar 

  5. Liu H, Xu K, Ai H, Zhang LL, Chen MC (2009) Polym Adv Technol 20:753–758

    Article  CAS  Google Scholar 

  6. Wang CS, Lee MC (2000) Polymer 41:3631–3638

    Article  CAS  Google Scholar 

  7. Cai SX, Lin CH (2005) J Polym Sci Part A: Polym Chem 43:2862–2873

    Article  CAS  Google Scholar 

  8. Lin CH, Cai SX, Lin CH (2005) J Polym Sci Part A: Polym Chem 43:5971–5986

    Article  CAS  Google Scholar 

  9. Levchik SV, Weil ED (2004) Polym Int 53:1901–1929

    Article  CAS  Google Scholar 

  10. Ciesielski M, Schäfer A, Döring M (2008) Polym Adv Technol 19:507–515

    Article  CAS  Google Scholar 

  11. Jeng RJ, Shau SM, Lin JJ, Su WC, Chiu YS (2002) Eur Polym J 38:683–693

    Article  CAS  Google Scholar 

  12. Dai SA, Juang TY, Chen CP, Chang HY, Kuo WJ, Su WC, Jeng RJ (2007) J Appl Polym Sci 103:3591–3599

    Article  CAS  Google Scholar 

  13. Dai SA, Chen CP, Lin CC, Chang CC, Wu TM, Su WC, Chang HL, Jeng RJ (2006) Macromol Mater Eng 291:395–404

    Article  CAS  Google Scholar 

  14. Chen CP, Dai SA, Chang HL, Su WC, Wu TM, Jeng RJ (2005) Polymer 46:11849–11857

    Article  CAS  Google Scholar 

  15. Tsai CC, Chang CC, Yu CS, Dai SA, Wu TM, Su WC, Chen CN, Chen Franklin MC, Jeng RJ (2009) J Mater Chem 19:8484–8494

    Article  CAS  Google Scholar 

  16. Fu JF, Shi LY, Yuan S, Zhong QD, Zhang DS, Chen Y, Wu J (2008) Polym Adv Technol 19:1597–1607

    CAS  Google Scholar 

  17. Yeganeh H, Razavi-Nouri M, Ghaffari M (2008) Polym Adv Technol 19:1024–1032

    Article  CAS  Google Scholar 

  18. Mezzenga R, Boogh L, Månson JAE (2000) J Polym Sci Part B: Polym Phys 38:1893–1902

    Article  CAS  Google Scholar 

  19. Yu D, Liu W, Liu YF (2010) Polym Composite 31:334–339

    CAS  Google Scholar 

  20. Miller RD, Burland DM, Jurich M, Lee VY, Moylan CR, Thackara JI, Twieg RJ, Verbiest T, Volksen W (1995) Macromolecules 28:4970–4974

    Article  CAS  Google Scholar 

  21. Montarnal D, Tournilhac F, Hidalgo M, Leibler L (2010) J Polym Sci Part A: Polym Chem 48:1133–1121

    Article  CAS  Google Scholar 

  22. LeMay JD, Kelley FN (1986) Adv Polym Sci 78:115–148

    Article  CAS  Google Scholar 

  23. Artner J, Ciesielski M, Walter O, Döring M, Perez RM, Sandler JKW, Altstädt V, Schartel B (2008) Macromol Mater Eng 293:503–514

    Article  CAS  Google Scholar 

  24. Kuo MC, Jeng RJ, Su WC, Dai SA (2008) Macromolecules 41:682–690

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Council (NSC) of Taiwan, the Chung-Shan Institute of Science, and the Ministry of Education, Taiwan, under the ATU plan, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Yuan Juang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juang, TY., Liu, JK., Chang, CC. et al. A reactive modifier that enhances the thermal mechanical properties of epoxy resin through the formation of multiple hydrogen-bonded network. J Polym Res 18, 1169–1176 (2011). https://doi.org/10.1007/s10965-010-9520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9520-3

Keywords

Navigation