Skip to main content
Log in

On-line monitoring of cycloaliphatic epoxy/acrylate interpenetrating polymer networks formation and characterization of their mechanical properties

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The novel interpenetrating polymer networks (IPNs) based on cycloaliphatic epoxy resin (CER) containing cyclohexene oxide groups and tri-functional acrylate, trimethylol-1, 1, 1-propane trimethacrylate (TMPTMA) were synthesized. The formation of the IPNs was on-line monitored by means of polarizing optical microscope, time-resolved light scattering and Fourier transform infrared spectroscopy. The morphological and mechanical properties of the resultant IPNs were investigated and evaluated with scanning electron microscopy (SEM) and dynamical thermal mechanical analysis (DTMA), respectively. The on-line monitoring results showed that during the course of the IPNs formation, the TMPTMA component was cured more quickly than the CER component, leading to the formation of the sequential IPNs. During the early curing stage, there were the phase separation phenomena in the CER/TMPTMA system. The SEM results revealed that although there were some slight phase separation phenomena in the CER/TMPTMA system in the early curing stage, the resultant IPNs displayed the homogeneous structures and did not show the apparent phase separation morphology. The DTMA results revealed that the resulting IPNs exhibited rather higher modulus and denser cross-linking network structure than the neat CER system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. May CA (1988) Epoxy resins: chemistry and technology, 2nd edn. Dekker, New York

    Google Scholar 

  2. Goulding TM (1994) In: Pizzi A, Mattal KL (eds) Handbook of adhesive technology. Dekker, New York

    Google Scholar 

  3. Chen M, Ren AS, Wang JF, Lee MS, Dalton LR, Zhang H, Sun G, Steirer WH (1999) Polym Prepr 40:162

    CAS  Google Scholar 

  4. Cortes P, Montserrat S, Hutchinson JM (1997) J Appl Polym Sci 63:17

    Article  CAS  Google Scholar 

  5. Suvarna S, Ambekar SY, Saletori M, Biswas C, Rajanna AV (2000) J Appl Polym Sci 77:2097

    Article  Google Scholar 

  6. Sperling LH, Mishra V (1995) Polym Adv Technol 7:197

    Article  Google Scholar 

  7. Suthar B, Xiao HX, Klempner D, Frisch KC (1996) Polym Adv Technol 7:221

    Article  CAS  Google Scholar 

  8. Djomo H, Morin A, Damyanidu M, Meyer G (1983) Polymer 24:65

    Article  CAS  Google Scholar 

  9. Nowers JR, Costanzo JA, Narasimhan B (2007) J Appl Polym Sci 104:891

    Article  CAS  Google Scholar 

  10. Kim SJ, Yoon SG, Kim SI (2005) Polym Int 54:149

    Article  CAS  Google Scholar 

  11. Dean K, Cook WD, Zipper MD, Burchill P (2001) Polymer 42:1345

    Article  CAS  Google Scholar 

  12. Hsieh KH, Han JL, Yu CT, Fu SC (2001) Polymer 42:2491

    Article  CAS  Google Scholar 

  13. Dean KM, Cook WD, Lin MY (2006) Eur Polym J 42:2872

    Article  CAS  Google Scholar 

  14. Plesse C, Vidal F, Gauthier C, Pelletier JM, Chevrot C, Teyssie D (2007) Polymer 48:696

    Article  CAS  Google Scholar 

  15. Flory PJJ (1941) Chem Phys 9:660

    CAS  Google Scholar 

  16. Huggins MLJ (1941) Chem Phys 9:440

    CAS  Google Scholar 

  17. Goossens S, Goderis B, Groeninckx G (2006) Macromolecules 39:2953

    Article  CAS  Google Scholar 

  18. Zhan G, Yu Y, Tang X, Tao Q, Li S (2006) J Polym Sci Part B Polym Phys 44:517

    Article  CAS  Google Scholar 

  19. Tao Q, Gan W, Yu Y, Wang M, Tang X, Li S (2004) Polymer 45:3505

    Article  CAS  Google Scholar 

  20. Park S-J, Kwak G-H, Sumita M, Lee J-R (2000) Polym Eng Sci 40:2569

    Article  CAS  Google Scholar 

  21. Qin C-L, Cai W-M, Cai J, Tang D-Y, Zhang J-S, Qin M (2004) Mater Chem Phys 85:402

    Article  CAS  Google Scholar 

  22. Cowie JMG, Harris S, Gomez Ribelles JL, Meseguer JM, Romero F, Torregrosa C (1999) Macromolecules 105:3777

    Google Scholar 

  23. Tobolsky AV (1960) Properties and structure of polymer. Wiley, New York

    Google Scholar 

  24. Schonhals A, Kremer F (2002) Dielectric spectroscopy. Springer-Verlag, Berlin

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Prof. Shanjun Li, the Key Laboratory of Molecular Engineer of Polymer, Ministry of Education, Department of Macromolecular Science, Fudan University, for the discussion, kind advice and his help to supply measurement about TRLS. The authors gratefully acknowledge the financial support of Shanghai committee of Science Technology by the funds for Major Research Project of Shanghai City (No. 05dz22303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PingKai Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, J., Kim, C. & Jiang, P. On-line monitoring of cycloaliphatic epoxy/acrylate interpenetrating polymer networks formation and characterization of their mechanical properties. J Polym Res 16, 45–54 (2009). https://doi.org/10.1007/s10965-008-9201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-008-9201-7

Keywords

Navigation