Skip to main content
Log in

Crystallization and melting behaviors of poly(trimethylene terephthalate)

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The crystallization and melting behaviors of poly(trimethylene terephthalate) (PTT) have been studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and solid-state NMR. At certain crystallization temperatures (Tc) for a given time, the isothermally crystallized PTT exhibits two melting endotherms, which is similar to that of PET and PBT. At higher crystallization temperature (Tc = 210 °C), the low-temperature endotherm is related to the melting of the original crystals, while the high-temperature endotherm is associated with the melting of crystals recrystallized during the heating. The peak temperatures of these double-melting endotherms depend on crystallization temperature, crystallization time, and cooling rate from the melt as well as the subsequent heating rate. At a low cooling rate (0.2 °C/min) or a high heating rate (40 °C/min), these two endotherms tend to coalesce into a single endotherm, which is considered as complete melting without reorganization. WAXD results confirm that only one crystal structure exists in the PTT sample regardless of the crystallization conditions even with the appearance of double melting endotherms. The results of NMR reveal that the annealing treatment increases proton spin lattice relaxation time in the rotation frame, T H, of the PTT. This phenomenon suggests that the mobility of the PTT molecules decreases after the annealing process. The equilibrium melting temperature (T om ) determined by the Hoffman-Weeks plot is 248 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Ng and H. L. Williams, Makromol. Chem., 182, 3323 (1981).

    CAS  Google Scholar 

  2. C. C. Gonzalez, J. M. Perena and A. Bello, J. Polym. Sci., Polym. Phys. Ed., 26, 1397 (1988).

    Google Scholar 

  3. T. Imamura, T. Sato and T. Matsumoto, Jpn. Pat. 08,232,117 (1996).

  4. K. Dangayach, H. Chuah, W. Gergen, P. Dalton and F. Smith, Plastics-Saving Planet Earth, 55th ANTEC Proc., 2097 (1997).

  5. K. Tsumashima, and M. Suzuki, Jpn. Pat. 08,104,763 (1996).

  6. Z. Gao, A. Molnar, F. G. Morin and A. Eisenberg, Macromolecules, 25, 6460 (1992).

    CAS  Google Scholar 

  7. V. T. McBrierty, D. C. Douglass and T. K. Kwei, Magn. Reson. in Chem., 32, 853 (1994).

    Google Scholar 

  8. D. L. Vanderhar and J. D. Barnes, Macromolecules, 27, 2826 (1994).

    Google Scholar 

  9. P. P. Chu, J. M. Huang, H. D. Wu, C. R. Chiang and F. C. Chang, J. Polym. Sci., Polym. Phys. Ed., 37, 1155 (1999).

    CAS  Google Scholar 

  10. J. M. Huang, P. P. Chu and F. C. Chang, Polymer, 41, 1741 (2000).

    CAS  Google Scholar 

  11. R. J. Samuels, J. Polym. Sci., Polym. Phys. Ed., 13, 1417 (1975).

    Article  CAS  Google Scholar 

  12. W. M. Prest and D. J. Luca, J. Appl. Phys., 46, 4136 (1975).

    Article  CAS  Google Scholar 

  13. R. C. Roberts, Polymer, 10, 17 (1969).

    Google Scholar 

  14. G. E. Sweet and J. P. Bell, J. Polvm. Sci., Polym. Phys. Ed., 10, 273 (1972).

    Google Scholar 

  15. M. Todoki and T. Kawaguchi, J. Polym. Sci., Polym. Phys. Ed., 15, 1067 (1977).

    CAS  Google Scholar 

  16. J. Boon, G. Challa and D. W. Krevelen, J. Polym. Sci., Polym. Phys. Ed., 6, 1791 (1968).

    CAS  Google Scholar 

  17. Y. Lee and R. S. Porter, Macromolecules, 20, 1336 (1987).

    CAS  Google Scholar 

  18. Y. Lee, R. S. Porter and J. S. Lin, Macromolecules, 22, 1756 (1989).

    CAS  Google Scholar 

  19. M. Pyda, A. Boller, J. Grebowicz, H. Chuah, V. Lebedev and B. Wunderlich, J. Polym. Phys. Ed., 36, 2499 (1998).

    CAS  Google Scholar 

  20. S. Peres, P. D. Suzie, J. F. Revol and F. Brisse, Polymer, 20, 419 (1979).

    Google Scholar 

  21. R. E. Robertson and M. E. Michols, J. Polym. Sci., Polym. Phys. Ed., 30, 755 (1992).

    Google Scholar 

  22. J. D. Hoffman and J. J. Weeks, J. Chem. Phys., 42, 4301 (1965).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Chih Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JM., Ju, MY., Chu, P.P. et al. Crystallization and melting behaviors of poly(trimethylene terephthalate). J Polym Res 6, 259–266 (1999). https://doi.org/10.1007/s10965-006-0096-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-006-0096-x

Keywords

Navigation