Skip to main content

Advertisement

Log in

Kinetics of Phase Separation in Poly(ɛ-caprolactone)/Poly(ethylene glycol) Blends

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The poly(ɛ-caprolactone)/poly(ethylene glycol) (PCL/PEG) blends reveal a miscibility window of upper critical solution temperature (UCST) character. The kinetics of liquid–liquid phase separation (LLPS) for the blends of PCL/PEG is investigated by time-resolved small angle light scattering (TRSALS). The time evolution of scattering profile is analyzed by linear Cahn–Hilliard theory for early stage of spinodal decomposition (SD). The evolution of the maximum intensity Im(t) and the corresponding wavenumber qm(t) obey the power-law scheme (Im(t)∼tβ and qm(t)∼t−α). A relation of β=3α in late stage is obtained almost the same scaling exponents with β≅1 and α≅1/3 for various quenching depths. The α≅1/3 implied that a coarsening mechanism at the late stage of phase separation may proceed with Ostwald ripening or Brownian coalescence process. Besides, the intermediate and late stages of SD can be scaled into a universal from represented well by Furukawa’s structure factor. The percolation to cluster transition is accompanied with α∼0.13→1/3 from intermediate to late stage of SD for the off-critical mixture of PCL/PEG (4/6) blend. In this study, the experimental result demonstrates that the crystallization is a viable mechanism to lock phase-separated structure of the blends. The competition between phase separation and crystallization has been suggested to determine the final morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Lin and C. H. Lu, J. Memb. Sci., 198, 109 (2002).

    Article  Google Scholar 

  2. W. J. Lin, D. R. Flanagan and R. J. Linhardt, Polymer, 40, 1731 (1999).

    Article  Google Scholar 

  3. G. T. Caneba and D. S. Soong, Macromolecules, 18, 2538 (1985).

    Article  Google Scholar 

  4. P. D. Graham, A. J. Pervan and A. J. McHugh, Macromolecules, 30, 1651 (1997).

    Article  Google Scholar 

  5. D. R. Loyd, K. E. Kinzer and H. S. Tseng, J. Membr. Sci., 64, 1 (1990).

    Article  Google Scholar 

  6. H. Matsuyama, S. Berghmans, M. Batarseh and D. R. Lloyd, J. Membr. Sci., 142, 27 (1998).

    Article  Google Scholar 

  7. T. Hashimoto, J. Kumaki and H. Kawai, Macromolecules, 16, 641 (1983).

    Article  Google Scholar 

  8. T. Hashimoto, in Structure of Polymer Blends, E. L. Thomas, Ed., Material Science and Technology 12, Weinheim, 1993.

  9. F. S. Bates and P. Wiltzius, J. Chem. Phys., 91, 3258 (1989).

    Article  Google Scholar 

  10. T. Kyu and J. Saldanha, Macromolecules, 21, 1021 (1988).

    Article  Google Scholar 

  11. K. Binder, Adv. Polym. Sci., 112, 183 (1994).

    Google Scholar 

  12. P. G. de Gennes, J. Chem. Phys., 72, 4756.

  13. J. D. Gunton, M. San Miguel and P. S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, Eds., Academic Press, London, 1983.

    Google Scholar 

  14. J. W. Chan and J. E. Hilliard, J. Chem. Phys., 28, 258 (1958) and J. Chem. Phys., 31, 688 (1959).

    Article  Google Scholar 

  15. H. E. Cook, Acta Metall., 18, 297 (1970).

    Article  Google Scholar 

  16. H. Tanaka and T. Nishi, Phys. Rev. Lett., 55, 1102 (1985).

    Article  PubMed  Google Scholar 

  17. N. Inaba, K. Sato, S. Suzuki and T. Hashimoto, Macromolecules, 19, 1690 (1986).

    Article  Google Scholar 

  18. N. Inaba, K. Sato, S. Suzuki and T. Hashimoto, Macromolecules, 21, 407 (1988).

    Article  Google Scholar 

  19. C. M. Chou and P. D. Hong, Macromolecules, 36, 7331 (2003).

    Article  Google Scholar 

  20. W. T. Chuang and P. D. Hong, in preparation.

  21. H. Tanaka and T. Nishi, Phys. Rev. Lett., 55, 1102 (1985).

    Article  PubMed  Google Scholar 

  22. M. Okada and C. C. Han, J. Chem. Phys., 85, 5317 (1986).

    Article  Google Scholar 

  23. P. G. de Gemmes, J. Chem. Phys., 72, 631 (1980).

    Google Scholar 

  24. H. L. Snyder and P. Meakin, J. Chem. Phys., 73, 217 (1985).

    Google Scholar 

  25. H. L. Snyder, P. Meakin and S. Reich, Macromolecules, 16, 757 (1983).

    Article  Google Scholar 

  26. K. Binder and D. Stauffer, Phys. Rev. Lett., 33, 1006 (1974).

    Article  Google Scholar 

  27. J. S. Langer, M. Bar-on and H. S. Miller, Phys. Rev. A, 11, 1417 (1975).

    Article  Google Scholar 

  28. T. Hashimoto, M. Itakura and N. Shimidzu, J. Chem. Phys., 85, 6773 (1986).

    Article  Google Scholar 

  29. I. M. Lifshits and V. V. Slyozov, J. Phys. Chem. Solids, 19, 35 (1961).

    Article  Google Scholar 

  30. K. Binder and D. Suffer, Adv. Phys., 25, 343 (1976).

    Google Scholar 

  31. E. D. Siggia, Phys. Rev. A, 20, 595 (1979).

    Article  Google Scholar 

  32. H. Furukawa, Phys. Rev. Lett., 43, 136 (1979).

    Article  Google Scholar 

  33. G. Porod, Koll. Z., 124, 83 (1951), 125, 51 (1952) and 125, 108 (1952).

    Article  Google Scholar 

  34. T. Hashimoto, M. Takenaka and T. Izumitani, J. Chem. Phys., 97, 679 (1992).

    Article  Google Scholar 

  35. J. Luger, R. Lay and W. Gronski, J. Chem. Phys., 101, 7181 (1994).

    Article  Google Scholar 

  36. H. Takeno and T. Hashimoto, J. Chem. Phys., 107, 1634 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Da Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, WT., Shih, KS. & Hong, PD. Kinetics of Phase Separation in Poly(ɛ-caprolactone)/Poly(ethylene glycol) Blends. J Polym Res 12, 197–204 (2005). https://doi.org/10.1007/s10965-004-1868-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-004-1868-9

Keywords

Navigation