Skip to main content
Log in

The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper establishes complete convergence for weighted sums and the Marcinkiewicz–Zygmund-type strong law of large numbers for sequences of negatively associated and identically distributed random variables \(\{X,X_n,n\ge 1\}\) with general normalizing constants under a moment condition that \(ER(X)<\infty \), where \(R(\cdot )\) is a regularly varying function. The result is new even when the random variables are independent and identically distributed (i.i.d.), and a special case of this result comes close to a solution to an open question raised by Chen and Sung (Stat Probab Lett 92:45–52, 2014). The proof exploits some properties of slowly varying functions and the de Bruijn conjugates. A counterpart of the main result obtained by Martikainen (J Math Sci 75(5):1944–1946, 1995) on the Marcinkiewicz–Zygmund-type strong law of large numbers for pairwise i.i.d. random variables is also presented. Two illustrative examples are provided, including a strong law of large numbers for pairwise negatively dependent random variables which have the same distribution as the random variable appearing in the St. Petersburg game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baum, L.E., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108–123 (1965)

    MathSciNet  MATH  Google Scholar 

  2. Bose, A., Chandra, T.K.: Cesàro uniform integrability and \(L_p\)-convergence. Sankhya Ser. A 55, 12–28 (1993)

    MATH  Google Scholar 

  3. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation (Encyclopedia of Mathematics and its Applications, 27). Cambridge University Press, Cambridge (1989)

    Google Scholar 

  4. Block, H.W., Savits, T.H., Shaked, M.: Some concepts of negative dependence. Ann. Probab. 10(3), 765–772 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Bojanić, R., Seneta, E.: Slowly varying functions and asymptotic relations. J. Math. Anal. Appl. 34, 302–315 (1971)

    MathSciNet  MATH  Google Scholar 

  6. Burton, R.M., Dabrowski, A.R., Dehling, H.: An invariance principle for weakly associated random vectors. Stoch. Process. Appl. 23, 301–306 (1986)

    MathSciNet  MATH  Google Scholar 

  7. Chandra, T.K., Goswami, A.: Cesàro \(\alpha \)-integrability and laws of large numbers I. J. Theor. Probab. 16(3), 655–669 (2003)

    MATH  Google Scholar 

  8. Chen, P., Sung, S.H.: On the strong convergence for weighted sums of negatively associated random variables. Stat. Probab. Lett. 92, 45–52 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Chow, Y.S., Robbins, H.: On sums of independent random variables with infinite moments and “fair” games. Proc. Natl. Acad. Sci. U.S.A. 47, 330–335 (1961)

    MathSciNet  MATH  Google Scholar 

  10. Csörgő, S., Simons, G.: A strong law of large numbers for trimmed sums, with applications to generalized St. Petersburg games. Stat. Probab. Lett. 26(1), 65–73 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Csörgő, S., Tandori, K., Totik, V.: On the strong law of large numbers for pairwise independent random variables. Acta Math. Hungar. 42(3–4), 319–330 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Dedecker, J., Merlevède, F.: Convergence rates in the law of large numbers for Banach-valued dependent variables. Theory Probab. Appl. 52(3), 416–438 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Ebrahimi, N., Ghosh, M.: Multivariate negative dependence. Commun. Stat. Theory Methods 10(4), 307–337 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Einmahl, U.: Toward a general law of the iterated logarithm in Banach space. Ann. Probab. 21(4), 2012–2045 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Einmahl, U., Li, D.-L.: Some results on two-sided LIL behavior. Ann. Probab. 33(4), 1601–1624 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Einmahl, U., Li, D.-L.: Characterization of LIL behavior in Banach space. Trans. Am. Math. Soc. 360(12), 6677–6693 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Etemadi, N.: An elementary proof of the strong law of large numbers. Z. Wahrsch. Verw. Gebiete 55(1), 119–122 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Feller, W.: An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech. 18, 343–355 (1968)

    MathSciNet  MATH  Google Scholar 

  19. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, New York (1968)

    MATH  Google Scholar 

  20. Galambos, J., Seneta, E.: Regularly varying sequences. Proc. Am. Math. Soc. 41, 110–116 (1973)

    MathSciNet  MATH  Google Scholar 

  21. Gut, A.: An extension of the Kolmogorov-Feller weak law of large numbers with an application to the St. Petersburg game. J. Theor. Probab. 17(3), 769–779 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Gut, A., Stadtmüller, U.: On the strong law of large numbers for delayed sums and random fields. Acta Math. Hungar. 129(1–2), 182–203 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Heath, D., Resnick, S., Samorodnitsky, G.: Heavy tails and long range dependence in ON/OFF processes and associated fluid models. Math. Oper. Res. 23, 145–165 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Hechner, F., Heinkel, B.: The Marcinkiewicz–Zygmund LLN in Banach spaces: a generalized martingale approach. J. Theor. Probab. 23(2), 509–522 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Hien, N.T.T., Thanh, L.V., Van, V.T.H.: On the negative dependence in Hilbert spaces with applications. Appl. Math. 64(1), 45–59 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Jessen, A.H., Mikosch, T.: Regularly varying functions. Publ. Inst. Math. (Beograd) (N.S.) 80, 171–192 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Jing, B.Y., Liang, H.Y.: Strong limit theorems for weighted sums of negatively associated random variables. J. Theor. Probab. 21, 890–909 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Joag-Dev, K., Proschan, F.: Negative association of random variables, with applications. Ann. Stat. 11, 286–295 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Ko, M.H., Kim, T.S., Han, K.H.: A note on the almost sure convergence for dependent random variables in a Hilbert space. J. Theor. Probab. 22, 506–513 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Kuelbs, J., Zinn, J.: Some results of LIL behavior. Ann. Probab. 11(3), 506–557 (1983)

    MathSciNet  MATH  Google Scholar 

  31. Lehmann, E.L.: Some concepts of dependence. Ann. Math. Stat. 37, 1137–1153 (1966)

    MathSciNet  MATH  Google Scholar 

  32. Martikainen, A.I.: A remark on the strong law of large numbers for sums of pairwise independent random variables. J. Math. Sci. 75(5), 1944–1946 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Matsumoto, K., Nakata, T.: Limit theorems for a generalized Feller game. J. Appl. Probab. 50(1), 54–63 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Matula, P.: A note on the almost sure convergence of sums of negatively dependent random variables. Stat. Probab. Lett. 15, 209–213 (1992)

    MathSciNet  MATH  Google Scholar 

  35. Miao, Y., Mu, J., Xu, J.: An analogue for Marcinkiewicz–Zygmund strong law of negatively associated random variables. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111(3), 697–705 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Mikosch, T., Resnick, S., Rootzén, H., Stegeman, A.: Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12, 23–68 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Petrov, V.V.: A note on the Borel–Cantelli lemma. Stat. Prob. Lett. 58, 283–286 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Rio, E.: A maximal inequality and dependent Marcinkiewicz–Zygmund strong laws. Ann. Probab. 23(2), 918–937 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Rio, E.: Vitesses de convergence dans la loi forte pour des suites dépendantes. (French) [Rates of convergence in the strong law for dependent sequences]. C. R. Acad. Sci. Paris Sér. I Math. 320(4), 469–474 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Seneta, E.: An interpretation of some aspects of Karamata’s theory of regular variation. Publ. Inst. Math. (Beograd) (N.S.) 15, 111–119 (1973)

    MathSciNet  MATH  Google Scholar 

  41. Seneta, E.: Regularly Varying Functions. Lecture Notes in Mathematics, vol. 508. Springer, Berlin (1976)

    MATH  Google Scholar 

  42. Shao, Q.M.: A comparison on maximum inequalities between negatively associated and independent random variables. J. Theor. Probab. 13, 343–356 (2000)

    MATH  Google Scholar 

  43. Shen, A., Zhang, Y., Volodin, A.: On the strong convergence and complete convergence for pairwise NQD random variables. Abstr. Appl. Anal., Art. ID 949608 (2014)

  44. Sung, S.H.: On the strong convergence for weighted sums of random variables. Stat. Pap. 52(2), 447–454 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Sung, S.H.: Marcinkiewicz–Zygmund type strong law of large numbers for pairwise i.i.d. random variables. J. Theor. Probab. 27(1), 96–106 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Szewczak, Z.: On Marcinkiewicz–Zygmund laws. J. Math. Anal. Appl. 375(2), 738–744 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Thanh, L.V.: On the almost sure convergence for dependent random vectors in Hilbert spaces. Acta Math. Hungar. 139(3), 276–285 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for constructive, perceptive and substantial comments and suggestions which enabled us to greatly improve the paper. In particular, the referee’s suggestions on the asymptotic inverse of the regularly varying function \(x^\alpha L(x)\) enabled us to obtain Theorems 3.1 and 4.1 which are considerably more general than those of the initial version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le V. Thanh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper was supported by NAFOSTED, Grant No. 101.03-2015.11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, V.T.N., Hien, N.T.T., Thanh, L.V. et al. The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences. J Theor Probab 34, 331–348 (2021). https://doi.org/10.1007/s10959-019-00973-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00973-2

Keywords

Mathematics Subject Classification (2010)

Navigation