Skip to main content
Log in

Darling–Kac Theorem for Renewal Shifts in the Absence of Regular Variation

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Regular variation is an essential condition for the existence of a Darling–Kac law. We weaken this condition assuming that the renewal distribution belongs to the domain of geometric partial attraction of a semistable law. In the simple setting of one-sided null recurrent renewal chains, we derive a Darling–Kac limit theorem along subsequences. Also in this context, we determine the asymptotic behaviour of the renewal function and obtain a Karamata theorem for positive operators. We provide several examples of dynamical systems to which these results apply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. In fact, here we could assume that \({\overline{F}}\) satisfies the discrete version of (10) and extend \(\ell \) and h such that \({\overline{F}}\) satisfies (10); see Sect. 7.1.

References

  1. Aaronson, J.: An introduction to infinite ergodic theory. In: Mathematical Surveys and Monographs, vol. 50. American Mathematical Society, Providence (1997)

  2. Aaronson, J., Denker, M.: Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1(2), 193–237 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkes, I., Györfi, L., Kevei, P.: Tail probabilities of St. Petersburg sums, trimmed sums, and their limit. J. Theor. Probab. 30(3), 1104–1129 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bingham, N.H.: On the limit of a supercritical branching process. J. Appl. Probab. Spec. 25A, 215–228 (1988)

    Article  MathSciNet  Google Scholar 

  5. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular variation. In: Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge (1989)

  6. Buldygin, V.V., Indlekofer, K.H., Klesov, O.I., Steinebach, J.G.: Pseudo-Regularly Varying Functions and Generalized Renewal Processes. Probability Theory and Stochastic Modelling. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  7. Caravenna, F., Doney, R.: Local large deviations and the strong renewal theorem. Electron. J. Probab. 24(72), 1–48 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Chaudhuri, R., Pipiras, V.: Non-Gaussian semi-stable laws arising in sampling of finite point processes. Bernoulli 22(2), 1055–1092 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Csörgő, S., Megyesi, Z.: Merging to semistable laws. Teor. Veroyatnost. i Primenen. 47(1), 90–109 (2002). https://doi.org/10.1137/S0040585X97979470

    Article  MathSciNet  MATH  Google Scholar 

  10. Csörgő, S.: Rates of merge in generalized St. Petersburg games. Acta Sci. Math. (Szeged) 68(3–4), 815–847 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and infinite divisibility. Z. Wahrsch. Verw. Gebiete 49(3), 335–347 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  13. Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-tailed and Subexponential Distributions. Springer Series in Operations Research and Financial Engineering. Springer, New York (2013)

    Book  MATH  Google Scholar 

  14. Garsia, A., Lamperti, J.: A discrete renewal theorem with infinite mean. Comment. Math. Helv. 37, 221–234 (1962/1963)

  15. Gaspard, P., Wang, X.J.: Sporadicity: between periodic and chaotic dynamical behaviors. Proc. Natl. Acad. Sci. USA 85(13), 4591–4595 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gouëzel, S.: Sharp polynomial estimates for the decay of correlations. Israel J. Math. 139, 29–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gouëzel, S.: Correlation asymptotics from large deviations in dynamical systems with infinite measure. Colloq. Math. 125, 193–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gouëzel, S.: Limit theorems in dynamical systems using the spectral method. In: Hyperbolic Dynamics, Fluctuations and Large Deviations, Proceedings of Symposia in Pure Mathematics, vol. 89, pp. 161–193. American Mathematical Society, Providence (2015)

  19. Gut, A., Martin-Löf, A.: A maxtrimmed St. Petersburg game. J. Theor. Probab. 29(1), 277–291 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kern, P., Wedrich, L.: On exact Hausdorff measure functions of operator semistable Lévy processes. Stoch. Anal. Appl. 35(6), 980–1006 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kevei, P.: Regularly log-periodic functions and some applications. To appear in Probability and Mathematical Statistics. arXiv:1709.01996

  22. Kevei, P., Csörgő, S.: Merging of linear combinations to semistable laws. J. Theor. Probab. 22(3), 772–790 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Korevaar, J.: Tauberian theory. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 329. Springer, Berlin (2004)

  24. Meerschaert, M.M., Scheffler, H.P.: Limit Distributions for Sums of Independent Random Vectors. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (2001)

    MATH  Google Scholar 

  25. Megyesi, Z.: A probabilistic approach to semistable laws and their domains of partial attraction. Acta Sci. Math. (Szeged) 66(1–2), 403–434 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Melbourne, I., Terhesiu, D.: Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 189(1), 61–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Melbourne, I., Terhesiu, D.: First and higher order uniform dual ergodic theorems for dynamical systems with infinite measure. Israel J. Math. 194(2), 793–830 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74(2), 189–197 (1980)

    Article  MathSciNet  Google Scholar 

  29. Sarig, O.: Subexponential decay of correlations. Invent. Math. 150(3), 629–653 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  31. Shimura, T., Watanabe, T.: Infinite divisibility and generalized subexponentiality. Bernoulli 11(3), 445–469 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Thaler, M.: Transformations on \([0,\,1]\) with infinite invariant measures. Israel J. Math. 46(1–2), 67–96 (1983)

    MathSciNet  MATH  Google Scholar 

  33. Thaler, M., Zweimüller, R.: Distributional limit theorems in infinite ergodic theory. Probab. Theory Relat. Fields 135(1), 15–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zweimüller, R.: Hopf’s ratio ergodic theorem by inducing. Colloq. Math. 101(2), 289–292 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Kevei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PK’s research was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, by the NKFIH Grant FK124141, and by the EU-funded Hungarian Grant EFOP-3.6.1-16-2016-00008. DT would like to thank CNRS for enabling a 3-month visit for her to IMJ-PRG, Pierre et Marie Curie University, where her research on this project began.

Appendix

Appendix

1.1 On the Discrete Form of (10)

Let us assume that the discrete version of (10) holds, i.e.

$$\begin{aligned} {\overline{F}}(n) = n^{-\alpha } {\ell (n)} [ M(\delta (n)) + h(n) ], \end{aligned}$$

where \(\ell : {{\mathbb {N}}}\rightarrow (0,\infty )\) is a slowly varying sequence, and \(h: {{\mathbb {N}}}\rightarrow {{\mathbb {R}}}\) is right-continuous error function such that \(\lim _{n \rightarrow \infty } h( \lfloor A_{k_n} x \rfloor ) = 0\), whenever x is a continuity point of M. It is possible to extend the functions \(\ell \) and h (still denoted by \(\ell \) and h), such that (10) holds. Indeed, let

$$\begin{aligned} \ell (x) = \lfloor x \rfloor ^{-\alpha }{\ell (\lfloor x \rfloor ) x^\alpha }, \quad h(x) = h(\lfloor x \rfloor ) + M(\delta (\lfloor x \rfloor )) - M(\delta (x)). \end{aligned}$$

Then, \({\overline{F}}(x) = x^{-\alpha } {\ell (x)} [ M(\delta (x)) + h(x) ] = {\overline{F}}(\lfloor x \rfloor )\). Clearly, \(\ell \) is a slowly varying function, so we only have to show that h satisfies the conditions after (10). Let x be a continuity point of M, and assume that \(x \in (1, c^{1/\alpha })\). The general case follows similarly. By the definition

$$\begin{aligned} h(A_{k_n} x ) = h( \lfloor A_{k_n} x \rfloor ) + [M(\delta (\lfloor A_{k_n} x \rfloor )) - M(\delta ( A_{k_n} x))], \end{aligned}$$

so according to assumption on h, it is enough to show that the term in the square brackets tends to 0. As \(A_{k_{n+1}} / A_{k_n} \rightarrow c^{1/\alpha }\), we have for n large enough, \(\delta ( A_{k_n} x ) = x\), and \(\delta ( \lfloor A_{k_n} x \rfloor ) = \lfloor A_{k_n} x \rfloor / A_{k_n} \rightarrow x\). Since x is a continuity point of M, the statement follows.

1.2 Proof of Lemma 3

Introduce the notation

$$\begin{aligned} \begin{aligned} \nu _\lambda ( x)&= 1 - \frac{R_\lambda (x)}{R_\lambda (1)} = 1- x^{-\alpha } \frac{M(x \lambda ^{1/\alpha })}{M(\lambda ^{1/\alpha })}, \quad x \ge 1. \end{aligned} \end{aligned}$$

Then, \(\nu _\lambda \) is a distribution function. Consider the decomposition \(G_\lambda (x) = G_{\lambda , 1}(x) * G_{\lambda , 2}(x)\), where

$$\begin{aligned} G_{\lambda , 1}(x) = \mathrm{e}^{-s} \sum _{n=0}^\infty \frac{s^n}{n!} \nu _\lambda ^{*n}(x), \end{aligned}$$

with \(s= - R_\lambda (1)\), where \(*\) stands for convolution, and \(*n\) for nth convolution power. Simply

$$\begin{aligned} \int _0^\infty \mathrm{e}^{-u x} \mathrm {d}G_{\lambda , 1}(x) = \exp \left\{ - \int _1^\infty \left( 1 - \mathrm{e}^{-u y} \right) \mathrm {d}R_\lambda (y) \right\} . \end{aligned}$$

Since \({\overline{G}}_{\lambda , 2} (x) = o(\mathrm{e}^{-x})\) holds uniformly in \(\lambda \) as \(x \rightarrow \infty \), we have that \({\overline{G}}_{\lambda } (x) \sim {\overline{G}}_{\lambda , 1} (x)\) uniformly in \(\lambda \in [c^{-1},1]\). Therefore, to prove the statement we have to show that \({\overline{G}}_{\lambda , 1} (x) \sim x^{-\alpha } {M ( x \lambda ^{1/\alpha } )}\) holds uniformly in \(\lambda \in [c^{-1},1]\). From the proof of implication (ii) \(\Rightarrow \) (iii) of Theorem 3 in [11], we see that it is enough to show that subexponential property and the Kesten bounds hold uniformly in \(\lambda \in [c^{-1},1]\), i.e. with \({\overline{\nu }}_\lambda (x) = 1 - \nu _\lambda (x)\)

$$\begin{aligned} \lim _{x \rightarrow \infty } \sup _{\lambda \in [c^{-1},1]} \left| \frac{\overline{\nu ^{*n}_\lambda }(x)}{{\overline{\nu }}_\lambda (x)} - n \right| =0, \end{aligned}$$
(51)

and for any \(\varepsilon > 0\), there exists K, such that for all \(n \in {{\mathbb {N}}}\) and \(\lambda \in [c^{-1},1]\)

$$\begin{aligned} \overline{\nu ^{*n}_{\lambda }} (x) \le K ( 1 + \varepsilon )^n {\overline{\nu }}_\lambda (x). \end{aligned}$$
(52)

According to Theorem 3.35 and Theorem 3.39 (with \(\tau \equiv n\)) by Foss et al. [13] both (51) and (52) hold if

$$\begin{aligned} \lim _{x \rightarrow \infty } \sup _{\lambda \in [c^{-1},1]} \left| \frac{\overline{ \nu _\lambda * \nu _\lambda } (x)}{{\overline{\nu }}_\lambda (x)} - 2 \right| = 0. \end{aligned}$$
(53)

Now we prove (53). Write

$$\begin{aligned} \frac{\overline{\nu _\lambda * \nu _\lambda }(x)}{{\overline{\nu }}_\lambda (x)} = \int _1^{x-1} \frac{{\overline{\nu }}_\lambda (x-y)}{{\overline{\nu }}_\lambda (x)} \mathrm {d}\nu _\lambda (y) + \frac{{\overline{\nu }}_\lambda (x-1)}{{\overline{\nu }}_\lambda (x)}. \end{aligned}$$
(54)

By the logarithmic periodicity of M the second term can be written as

$$\begin{aligned} \frac{{\overline{\nu }}_\lambda (x-1)}{{\overline{\nu }}_\lambda (x)} = \left( \frac{x}{x-1} \right) ^\alpha \frac{M \left( c^{\alpha ^{-1} \{ \log _c x^\alpha \}} \lambda ^{1/\alpha } ( 1 - x^{-1}) \right) }{M \left( c^{\alpha ^{-1} \{ \log _c x^\alpha \}} \lambda ^{1/\alpha } \right) }, \end{aligned}$$

which goes to 1 uniformly in \(\lambda \) due to the continuity of M (a continuous function is uniformly continuous on compacts). To handle the first term in (54), choose \(\delta > 0\) arbitrarily small, and K so large that \(\sup _{\lambda \in [c^{-1},1]} {\overline{\nu }}_\lambda (K) < \delta \). As before, uniformly in \(\lambda \in [c^{-1},1]\),

$$\begin{aligned} \int _1^K \left| \frac{{\overline{\nu }}_\lambda (x-y)}{{\overline{\nu }}_\lambda (x)} - 1 \right| \mathrm {d}\nu _\lambda (y) \rightarrow 0. \end{aligned}$$

We show that the integral on \([K, \infty )\) is small. Put \(C = \sup _{y} M(y) / \inf _{y} M(y)\). Integrating by parts, we have

$$\begin{aligned} \begin{aligned}&\int _K^{x- 1} \frac{{\overline{\nu }}_\lambda (x-y) }{{\overline{\nu }}_\lambda (x)} \mathrm {d}\nu _\lambda (y) \le C \int _K^{x-1} \left( \frac{x}{x-y} \right) ^{\alpha } \mathrm {d}\nu _\lambda (y) \\&= C x^\alpha \left[ \frac{{\overline{\nu }}_\lambda (K) }{(x-K)^\alpha } - {\overline{\nu }}_\lambda (x-1) + \int _K^{x-1} {\overline{\nu }}_\lambda (y) \alpha (x-y)^{-\alpha -1} \mathrm {d}y \right] . \end{aligned} \end{aligned}$$
(55)

The first term is small. The uniform continuity of M on compact sets, and its strict positivity implies that there is \(\delta '>0\) small enough, such that for all \(y \in [c^{-1/\alpha }, c^{1/\alpha }]\)

$$\begin{aligned} \begin{aligned} (1- \delta ) M(y) \le \inf _{0 \le u \le \delta '} M( (1-u) y ) \le \sup _{0 \le u \le \delta '} M( (1-u) y ) \le (1 + \delta ) M(y). \end{aligned} \end{aligned}$$

Thus, using also that \(\int _{\delta '}^1 u^{-\alpha -1} (1-u)^{-\alpha } \mathrm {d}u < \infty \), we obtain

$$\begin{aligned} \begin{aligned}&x^{\alpha } \int _K^{x-1} {\overline{\nu }}_\lambda (y) \alpha (x-y)^{-\alpha -1} \mathrm {d}y \\&= \frac{\alpha }{x^{\alpha } M(\lambda ^{1/\alpha })} \int _{1/x}^{1- K/x} \frac{M\left( (1-u) c^{\alpha ^{-1} \{\log _c x^\alpha \} }\lambda ^{1/\alpha } \right) }{u^{1+\alpha } (1-u)^{\alpha }} \mathrm {d}u \\&= \frac{\alpha }{x^{\alpha } M(\lambda ^{1/\alpha })} \int _{x^{-1}}^{\delta '} \frac{M \left( (1-u) c^{\alpha ^{-1} \{\log _c x^\alpha \} } \lambda ^{1/\alpha } \right) }{u^{\alpha +1} (1-u)^{\alpha }} \mathrm {d}u + O(x^{-\alpha }) \\&\le \frac{1 + \delta }{(1-\delta ')^\alpha } \frac{M(x \lambda ^{1/\alpha })}{M(\lambda ^{1/\alpha })} + O(x^{-\alpha }). \end{aligned} \end{aligned}$$

The lower bound follows similarly. Substituting back into (55)

$$\begin{aligned} \limsup _{x \rightarrow \infty } \sup _{\lambda \in [c^{-1},1]} \int _K^{x- 1} \frac{{\overline{\nu }}_\lambda (x-y) }{{\overline{\nu }}_\lambda (x)} \mathrm {d}\nu _\lambda (y) \le C \left[ \delta + \max \left\{ \frac{1+\delta }{(1- \delta ')^\alpha } -1 , \delta \right\} \right] . \end{aligned}$$

Since \(\delta > 0\) and \(\delta '>0\) are arbitrarily small, the statement follows.

1.3 A Technical Result Used in the Proof of Theorem 3

Lemma 6

Put \(g = 1_{[\mathrm{e}^{-1},1]}\). For any \(\delta > 0\) and \(\varepsilon > 0\) there exist polynomials \(Q_1\) and \(Q_2\) such that

$$\begin{aligned} Q_1(x) \le g(x) \le Q_2(x), \quad x \in [0,1], \end{aligned}$$

and for any measure \(\mu \) on \((0,\infty )\) such that \(\int _0^\infty \mathrm{e}^{-x} \mu (\mathrm {d}x) < \infty \),

$$\begin{aligned} \begin{aligned}&\int _0^\infty \left[ Q_2(\mathrm{e}^{-x}) - g(\mathrm{e}^{-x} ) \right] \mu (\mathrm {d}x)< \varepsilon \int _0^\infty \mathrm{e}^{-x} \mu (\mathrm {d}x) + \mu ((1-\delta , 1+\delta )) \\&\int _0^\infty \left[ g(\mathrm{e}^{-x}) - Q_1(\mathrm{e}^{-x}) \right] \mu (\mathrm {d}x) < \varepsilon \int _0^\infty \mathrm{e}^{-x} \mu (\mathrm {d}x) + \mu ((1-\delta , 1+\delta )). \end{aligned} \end{aligned}$$

Proof

Fix \(\varepsilon > 0\) and \(\delta > 0\). Let

$$\begin{aligned} g_2 (x) = {\left\{ \begin{array}{ll} 0, &{} x \le \mathrm{e}^{-1} - \delta ', \\ \frac{e}{\delta '} (x - \mathrm{e}^{-1} + \delta '), &{} x \in [\mathrm{e}^{-1} - \delta ', \mathrm{e}^{-1}], \\ x^{-1}, &{} x \in [\mathrm{e}^{-1}, 1], \end{array}\right. } \end{aligned}$$

where \(\delta ' > 0\) is chosen such that \(- \log (\mathrm{e}^{-1} - \delta ') < 1 + \delta \). Then, \(g_2\) is a continuous function on [0, 1], and \(x g_2(x) \ge g(x)\). By the approximation theorem of Weierstrass, there is a polynomial \(r_2(x)\), such that

$$\begin{aligned} \sup _{x \in [0,1]} | r_2(x) - (g_2(x) + \varepsilon /2) | \le \frac{\varepsilon }{2}. \end{aligned}$$

Let \(Q_2(x) = x r_2(x)\). By the choice of \(r_2\), we have \(0 \le Q_2(x) - x g_2(x) \le \varepsilon x\). Moreover,

$$\begin{aligned} \begin{aligned} Q_2(x) - g(x) = Q_2(x) - x g_2(x) + x g_2(x) - g(x) \le \varepsilon x + 1_{[\mathrm{e}^{-1} - \delta ', \mathrm{e}^{-1}]}(x). \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} \int _0^\infty \left[ Q_2(\mathrm{e}^{-x}) - g(\mathrm{e}^{-x}) \right] \mu (\mathrm {d}x)&\le \varepsilon \int _0^\infty \mathrm{e}^{-x} \mu (\mathrm {d}x) + \mu \left( [1, - \log (\mathrm{e}^{-1} - \delta ')] \right) \\&\le \varepsilon \int _0^\infty \mathrm{e}^{-x} \mu (\mathrm {d}x) + \mu ( [1, 1+ \delta )). \end{aligned} \end{aligned}$$

The construction of \(Q_1\) is similar. Choose

$$\begin{aligned} g_1(x) = {\left\{ \begin{array}{ll} 0, &{} x \le \mathrm{e}^{-1}, \\ (\delta ')^{-1} (\mathrm{e}^{-1} + \delta ')^{-1} (x-\mathrm{e}^{-1}), &{} x \in [\mathrm{e}^{-1}, \mathrm{e}^{-1}+\delta '], \\ x^{-1}, &{} x \ge \mathrm{e}^{-1} + \delta ', \end{array}\right. } \end{aligned}$$

and let \(r_1\) be a polynomial such that

$$\begin{aligned} \sup _{x \in [0,1]} | r_1(x) - (g_1(x) -\varepsilon /2)| \le \frac{\varepsilon }{2}. \end{aligned}$$

The same proof shows that \(Q_1(x) = x r_1(x)\) satisfies the stated properties. \(\square \)

1.4 Verifying that (40) Holds

To ease notation put \(a = {2\pi \alpha }/{\log c}\). Recall (35). For the first derivative

$$\begin{aligned} \xi '(n) = -\frac{1}{2n^{\alpha +1}} \left( \alpha (1+ 2\varepsilon \sin (a \log n))- 2 \varepsilon a \cos (a \log n) \right) < 0, \end{aligned}$$

whenever \(\varepsilon \) is small enough. Long but straightforward calculation gives

$$\begin{aligned} \varDelta \xi _n = \xi _{n} - \xi _{n-1} = \frac{n^{-\alpha -1}}{2} \left[ x_0(n) + \frac{x_1(n)}{n} + \frac{x_2(n)}{n^2} + O(n^{-3}) \right] , \end{aligned}$$
(56)

where \(x_0(n) = \alpha ( 1 + 2 \varepsilon \sin ( a \log n) ) - 2 \varepsilon a \cos (a \log n)\), and the first- and second-order terms are \(x_i(n) = c^i_0 + c^i_1 \sin (a \log n) + c^i_2 \cos (a \log n)\), \(i = 1,2,\) where \(c^i_j\) are constants, whose actual value is not important for us. Note that \(x_0(n)\) comes from the first derivative, and we use it frequently that

$$\begin{aligned} x_0(n) \ge \alpha - 2 \varepsilon (a + \alpha ) > 0 \end{aligned}$$
(57)

for \(\varepsilon > 0\) small enough. From (56), we deduce that

$$\begin{aligned} \frac{\varDelta \xi _{n-2}}{\varDelta \xi _{n-1}} = 1 + \frac{\alpha _n}{n} + \frac{r_n}{n^2} + R_n, \end{aligned}$$

with \(R_n = O(n^{-3})\), and \(\alpha _n = H_1( a \log n)\), \(r_n = H_2( a \log n)\), where

$$\begin{aligned} \begin{aligned} H_1(x)&= 1 + \alpha - 2 \varepsilon a \frac{a \sin x + \alpha \cos x}{\alpha ( 1 + 2 \varepsilon \sin x) - 2 \varepsilon a \cos x} \\ H_2(x)&= \frac{a_0^{2} + a_1^{2} \sin x + a_2^2 \sin (2x) + b_1^{2} \cos x + b_2^{2} \cos (2x)}{(\alpha ( 1 + 2 \varepsilon \sin x) - 2 \varepsilon a \cos x)^2} \end{aligned} \end{aligned}$$
(58)

with some constants \(a_j^{2}, b_j^{2}\), whose value is not important. By (57), the denominators in \(H_1, H_2\) are strictly positive, and therefore, \(H_1\) and \(H_2\) are continuous smooth (\(C^{\infty }\)) functions. This implies that \(\alpha _n = 1 + \alpha + O(\varepsilon )\), \(r_n=O(1)\),

$$\begin{aligned} \alpha _n - \alpha _{n-1} = O(n^{-1}), \ \alpha _{n-1} + \alpha _{n+1} - 2 \alpha _n= O(n^{-2}), \ r_n - r_{n-1} = O(n^{-1}). \end{aligned}$$

This is everything we need for the construction of \(f_\varepsilon \) in Sect. 6.1.

1.5 Distortion Properties for F

Let \(J_n := [ (\xi _n+1)/2, (\xi _{n-1}+1)/2 )\) be the intervals on which \(F := F_\varepsilon \) is continuous.

Lemma 7

There exists \(K>0\) such that \(\frac{F''(x)}{F'(x)^2} \le K\) for all n and all \(x \in J_n\). In particular, \(F|_{J_n}\) can be extended to \(\overline{J_n}\) for each n so that \(\frac{F''(x)}{F'(x)^2} \le K\) for all \(x \in {\overline{J}}_n\).

Proof

Given the map \(f_{\varepsilon , n}\) in Sect. 6.1, it is easy to see that for \(x \in [\xi _{n-1}, \xi _n]\), \(n\ge 1\),

$$\begin{aligned} f_{\varepsilon ,n}''(x) = \frac{A_n}{\xi _{n-1}-\xi _n} = O(n^{\alpha -1}) \quad \text { and } \quad \left| f_{\varepsilon , n}'(x)- \left( 1+\frac{\alpha _n}{n} \right) \right| = O(n^{-2}), \end{aligned}$$

where the derivatives at the end-points are interpreted as one-sided derivatives. From (58) at the end of the previous subsection, we know that \(\alpha _n = 1+\alpha + O(\varepsilon )\) as \(n \rightarrow \infty \) and \(\varepsilon \rightarrow 0\). Since \(\alpha > 0\), we can choose \(\delta > 0\) small enough such that \((1 + \alpha ) (1 - \delta ) > 1\). For n large enough \(f_{\varepsilon ,n}'(x) \ge 1+ \frac{1}{n}(1+\alpha )(1-\delta ) > 1\). It follows that \(D(f_{\varepsilon ,n}) := {f_{\varepsilon ,n}''}/{(f_{\varepsilon ,n}')^2}\) is uniformly bounded. Next, compute that for any two \(C^2\) functions gh,

$$\begin{aligned} D(g \circ h) = D(g) \circ h + \frac{1}{g'\circ h} D(h). \end{aligned}$$

Applying this to \(g = f^{n-1}\) and \(h = f\), gives

$$\begin{aligned} D(f^n) = D(f^{n-1}) \circ f + \frac{1}{(f^{n-1})' \circ f} D(f). \end{aligned}$$

Write \(x_k = f_\varepsilon ^k(x)\) for \(k \ge 0\). For some \(C = C(\delta ) > 0\)

$$\begin{aligned} (f_\varepsilon ^{n-1})'(x)= & {} f_\varepsilon '(x_{n-2}) f_\varepsilon '(x_{n-3}) \cdots f_\varepsilon '(x_0) \\\ge & {} C \left( 1+\frac{(1+\alpha )(1- \delta )}{n-1} \right) \left( 1+\frac{(1+\alpha )(1- \delta )}{n-2} \right) \cdots 2 \\= & {} 2 C \exp \left( \sum _{k=2}^n \log \left[ 1+\frac{(1+\alpha )(1- \delta )}{k-1} \right] \right) \\\sim & {} 2 C \exp (((1+\alpha )(1- \delta ))\log n + C_n) \\\ge & {} C' n^{(1+\alpha )(1- \delta )}, \end{aligned}$$

where \((C_n)\) is a bounded sequence and \(C' >0\). We get

$$\begin{aligned} D(f^n) \le D(f^{n-1}) \circ f + \frac{1}{C' n^{(1+\alpha )(1- \delta )} } D(f). \end{aligned}$$

By induction,

$$\begin{aligned} D(F|_{J_n}) \le D(f^n|_{J_n}) \ll D(f) \sum _{k=2}^{n-1} \frac{1}{C' k^{(1+\alpha )(1- \delta )}}, \end{aligned}$$

which is bounded in n since the exponent \((1+\alpha )(1- \delta ) > 1\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kevei, P., Terhesiu, D. Darling–Kac Theorem for Renewal Shifts in the Absence of Regular Variation. J Theor Probab 33, 2027–2060 (2020). https://doi.org/10.1007/s10959-019-00930-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00930-z

Keywords

Mathematics Subject Classification (2010)

Navigation