Skip to main content
Log in

Mixed Stochastic Differential Equations: Existence and Uniqueness Result

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper we establish an existence and uniqueness result for solutions of multidimensional, time-dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter \(H>1/2\) and a multidimensional standard Brownian motion under a weaker condition than the Lipschitz one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than \(1/2\). Stoch. Proc. Appl. 86, 121–139 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29, 766–801 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alòs, A., Nualart, D.: Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75, 129–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Hungar. 7, 81–94 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carmona, P., Coutin, L., Montseny, G.: Stochastic integration with respect to fractional Brownian motion. Ann. Inst. Henri Poincaré 39, 27–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10, 177–214 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eddahbi, M., Erraoui, M.: EDPS Paraboliques à coefficients non-lipschitziens avec réflexion. Ann. Math. Blaise Pascal 5(2), 7–19 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erraoui, M., Ouknine, Y.: Approximation des équations différentielles stochastiques par des équations à retard. Stochastics 46(1–2), 53–62 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Guerra, J., Nualart, D.: Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch. Anal. Appl. 26(5), 1053–1075 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105(2), 143–158 (1996)

    Article  MATH  Google Scholar 

  11. Hamadouche, D.: Invariance principles in Hölder spaces. Port. Math. 57, 127–151 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Hu, Y.: Integral transformations and anticipative calculus for fractional brownian motions. In: Memoirs of the American Mathematical Society, vol. 825. American Mathematical Society, Providence, RI (2005)

  13. Hurst, H.E.: Long-term storage capacity in reservoirs. Trans. Am. Soc. Civil Eng. 116, 400–410 (1951)

    Google Scholar 

  14. Kolmogorov, A.N.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. (German). C. R. (Doklady) Acad. URSS (N.S.) 26, 115–118 (1940)

    MathSciNet  MATH  Google Scholar 

  15. Kubilius, K.: The existence and uniqueness of the solution of an integral equation driven by a \(p\)-semimartingale of special type. Stoch. Process. Appl. 98(2), 289–315 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lyons, T.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14, 215–310 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mao, X.: Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients. Stoch. Process. Appl. 58(2), 281–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mishura, Y., Shevchenko, G.: Existence and uniqueness of the solution of stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index \(H>1/2\). Commun. Stat. Theory Methods 40(19–20), 3492–3508 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mishura, Y., Shevchenko, G.: Mixed stochastic differential equations with long-range dependence: existence, uniqueness and convergence of solutions. Comput. Math. Appl. 64(10), 3217–3227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nualart, D., Rascanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53(1), 55–81 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Young, L.C.: An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111(3), 333–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. II. Math. Nachr. 225, 145–183 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the financial support of the Laboratory LIBMA from the University Cadi Ayyad Marrakech and FCT—Fundação para a Ciência e a Tecnologia through the Project UID/MAT/04674/2013 (CIMA). We thank the anonymous referees for their careful reading of the manuscript and their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luís da Silva.

Appendix

Appendix

In this appendix, we recall some results which play a great role in this work. We also show a technical lemma that has been used in the proof of pathwise uniqueness. We begin with some a priori estimates from the paper of Nualart and Rascanu [21].

Proposition 11

We have

  1. (i)

    \({\displaystyle \left\| \int _{0}^{.}f(s)\,\mathrm{d}s\right\| _{\alpha ,t}\le C\int _{0}^{t}\frac{\left| f(s)\right| }{(t-s)^{\alpha }}\,\mathrm{d}s.}\)

  2. (ii)

    \({\displaystyle \left\| \int _{0}^{.}f(s)\,\mathrm{d}B^{H}(s)\right\| _{\alpha ,t} \le C\left\| B^{H}\right\| _{1-\alpha ,\infty ,t}\int _{0}^{t}\left( (t-s)^{-2\alpha }+s^{-\alpha }\right) \Vert f\Vert _{\alpha ,s}\,\mathrm{d}s.}\)

Moreover, under the linear growth assumption, we have from Nualart and Rascanu [21], the following

Proposition 12

Assume (H.1) and (H.2). The following estimates hold

  1. (j)

    \({\displaystyle \left\| \int _{0}^{.}b(s,f(s))\, \mathrm{d}s\right\| _{\alpha ,t} \le C\left( \int _{0}^{t}\dfrac{\left| f(s)\right| }{(t-s)^{\alpha }}\, \mathrm{d}s+1\right) .}\)

  2. (jj)

    \({\displaystyle \left\| \int _{0}^{.}\sigma _{H}(s,f(s))\, \mathrm{d}B^{H}(s)\right\| _{\alpha ,t} \le C\left\| B^{H}\right\| _{1-\alpha ,\infty ,t}\int _{0}^{t}\left( (t-s)^{-2\alpha }+s^{-\alpha }\right) }\) \(\big (1+\Vert f\Vert _{\alpha ,s}\big ) \mathrm{d}s.\)

We recall the following characterization of the convergence in probability in terms of weak convergence, see Gyöngy and Krylov [10].

Lemma 13

Let \((Z_{n})_{n\in \mathbb {N}}\) be a sequence of random elements in a Polish space \((\mathcal {E},d)\) equipped with the Borel \(\sigma \)-algebra. Then \((Z_{n})_{n\in \mathbb {N}}\) converges in probability to an \(\mathcal {E}\)-valued random element if and only if for every pair of subsequences \((Z_{m})_{m\in \mathbb {N}}\) and \((Z_{k})_{k\in \mathbb {N}}\) there exists a subsequence \((Z_{m(p)},Z_{k(p)})_{p\in \mathbb {N}}\) converging weakly to a random element v supported on the diagonal \(\left\{ (x,y)\in \mathcal {E}\times \mathcal {E}:x=y\right\} \).

Finally, let us give a version of Bihari’s lemma.

Lemma 14

2 Fix \(1/2<\alpha <1\), \(a, b\ge 0\). Let \(f:\left[ 0,\infty \right) \longrightarrow \left[ 0,\infty \right) \) be a continuous function such that

$$\begin{aligned} f(t)\le a+bt^{\alpha }\int _{0}^{t}(t-s)^{-\alpha }s^{-\alpha }\varrho \left( f(s)\right) \, \mathrm{d}s, \end{aligned}$$

where \(\varrho \) is a concave increasing function from \(\mathbb {R}_{+}\) to \(\mathbb {R}_{+}\) such that \(\varrho (0)=0\), \(\varrho (u)>0\) for \(u>0\) and satisfying (2.1) for some \(q>1\). Then for any \(1<p<2\) such that \(\alpha <1/p\) and \(q>1\) with \(1/p+1/q=1\) we have

$$\begin{aligned} f(t)\le \left[ F^{-1}\left( F(2^{q-1}a^{q})+2^{q-1}b^{q}\, C_{\alpha ,p}^{q/p}t^{q\left( (1/p)-\alpha \right) +1}\right) \right] ^{1/q}, \end{aligned}$$

for all \(t\in \left[ 0,T\right] \) such that

$$\begin{aligned} F(2^{q-1}a^{q})+2^{q-1}b^{q}\, C_{\alpha ,p}^{q/p}t^{q\left( (1/p)-\alpha \right) +1}\in Dom(F^{-1}), \end{aligned}$$

where

$$\begin{aligned} F(x)=\int _{1}^{x}\dfrac{\mathrm{d}u}{\varrho ^{q}(u^{1/q})},\quad for\, x \ge 0, \end{aligned}$$

and \(F^{-1}\) is the inverse function of F. In particular, if moreover, \(a=0\) then \(f(t)=0\) for all \(0<t<T\).

Proof

Let \(1<p<2\) be such that \(\alpha <1/p\). Using the Hölder inequality we obtain

$$\begin{aligned} f(t)\le a+bt^{\alpha }\left( \int _{0}^{t}(t-s)^{-p\alpha }s^{-p\alpha }\, \mathrm{d}s\right) ^{1/p}\left( \int _{0}^{t}\varrho ^{q}\left( f(s)\right) \, \mathrm{d}s\right) ^{1/q} \end{aligned}$$

For the first integral, using \(s=tu\), we have

$$\begin{aligned} \int _{0}^{t}(t-s)^{-p\alpha }s^{-p\alpha }\, \mathrm{d}s=t^{1-2p\alpha }\int _{0}^{1}(1-u)^{-p\alpha }u^{-p\alpha }\, \mathrm{d}u=C_{\alpha ,p}t^{1-2p\alpha } \end{aligned}$$

where \(C_{\alpha ,p}=B\left( 1-p\alpha ,1-p\alpha \right) \) is the beta function. It follows that

$$\begin{aligned} f(t)\le a+b\, C_{\alpha ,p}^{1/p}t^{(1/p)-\alpha }\left( \int _{0}^{t}\varrho ^{q}\left( f(s)\right) \, \mathrm{d}s\right) ^{1/q}. \end{aligned}$$

This yields

$$\begin{aligned} f^{q}(t)\le 2^{q-1}a^{q}+2^{q-1}b^{q}\, C_{\alpha ,p}^{q/p}t^{q\left( (1/p)-\alpha \right) }\int _{0}^{t}\varrho ^{q}\left( f(s)\right) \, \mathrm{d}s. \end{aligned}$$

Then it follows from Bihari’s Lemma, see [4], that

$$\begin{aligned} f(t)\le \left[ F^{-1}\left( F(2^{q-1}a^{q})+2^{q-1}b^{q}\, C_{\alpha ,p}^{q/p}t^{q\left( (1/p)-\alpha \right) +1}\right) \right] ^{1/q}, \end{aligned}$$

for all \(t\in \left[ 0,T\right] \) such that

$$\begin{aligned} F(2^{q-1}a^{q})+2^{q-1}b^{q}\, C_{\alpha ,p}^{q/p}t^{q\left( (1/p)-\alpha \right) +1}\in \mathrm {Dom}(F^{-1}). \end{aligned}$$

Now, it is simple to see from Eq. (2.1) that \(\lim _{x\rightarrow 0}F(x)=\infty \); therefore \(\lim _{x\rightarrow \infty }F^{-1}(x)=0\) which implies that \(f(t)=0\) when \(a=0\) for \(t\in [0,T]\).

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.L., Erraoui, M. & Essaky, E.H. Mixed Stochastic Differential Equations: Existence and Uniqueness Result. J Theor Probab 31, 1119–1141 (2018). https://doi.org/10.1007/s10959-016-0738-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0738-9

Keywords

Mathematics Subject Classification (2000)

Navigation