Skip to main content
Log in

Fractal Percolation, Porosity, and Dimension

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the porosity properties of fractal percolation sets \(E\subset \mathbb {R}^d\). Among other things, for all \(0<\varepsilon <\tfrac{1}{2}\), we obtain dimension bounds for the set of exceptional points where the upper porosity of E is less than \(\tfrac{1}{2}-\varepsilon \), or the lower porosity is larger than \(\varepsilon \). Our method works also for inhomogeneous fractal percolation and more general random sets whose offspring distribution gives rise to a Galton–Watson process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The amount of selected sub-cubes is iid, but the way these sub-cubes are distributed inside the parent cube is basically free. Their distributions can be different for different parent cubes, and all kinds of dependencies are allowed.

  2. Recall that \(\mu \) is the natural measure defined in (1.2).

References

  1. Berlinkov, A., Järvenpää, E.: Porosities in Mandelbrot percolation. Preprint http://www.math.jyu.fi/research/pspdf/280.pdf (2003)

  2. Broman, E.I., Camia, F.: Universal behavior of connectivity properties in fractal percolation models. Electron. J. Probab. 15, 1394–1414 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Broman, E.I., Camia, F., Joosten, M., Meester, R.: Dimension (in)equalities and Hölder continuous curves in fractal percolation. J. Theor. Probab. 26(3), 836–854 (2013)

    Article  MATH  Google Scholar 

  4. Chayes, J.T., Chayes, L., Durrett, R.: Connectivity properties of Mandelbrot’s percolation process. Probab. Theory Relat. Fields 77(3), 307–324 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cox, J.T., Griffin, P.S.: How porous is the graph of Brownian motion? Trans. Am. Math. Soc. 325(1), 119–140 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  7. Fraser, J., Miao, J., Troscheit, S.: The Assouad dimension of randomly generated fractals. Preprint http://arxiv.org/abs/1410.6949 (2014)

  8. Hawkes, J.: Trees generated by a simple branching process. J. Lond. Math. Soc. (2) 24(2), 373–384 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Järvenpää, E., Järvenpää, M., Mauldin, R.D.: Deterministic and random aspects of porosities. Discrete Contin. Dyn. Syst. 8(1), 121–136 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press, Cambridge. In preparation. Current version http://mypage.iu.edu/~rdlyons/ (2014)

  11. Lyons, R.: Random walks and percolation on trees. Ann. Probab. 18(3), 931–958 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mandelbrot, B.B.: Renewal sets and random cutouts. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22, 145–157 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mattila, P.: Distribution of sets and measures along planes. J. Lond. Math. Soc. (2) 38(1), 125–132 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mauldin, R.D., Williams, S.C.: Random recursive constructions: asymptotic geometric and topological properties. Trans. Am. Math. Soc. 295(1), 325–346 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nacu, Ş., Werner, W.: Random soups, carpets and fractal dimensions. J. Lond. Math. Soc. (2) 83(3), 789–809 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pakes, A.G., Dekking, F.M.: On family trees and subtrees of simple branching processes. J. Theor. Probab. 4(2), 353–369 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Peres, Y.: Probability on trees: an introductory climb. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1997), Volume 1717 of Lecture Notes in Math., pp. 193–280. Springer, Berlin (1999)

  18. Rams, M., Simon, K.: Projections of fractal percolations. Ergod. Theory Dyn. Syst. 35(2), 530–545 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sahlsten, T., Shmerkin, P., Suomala, V.: Dimension, entropy and the local distribution of measures. J. Lond. Math. Soc. (2) 87(1), 247–268 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shmerkin, P.: Porosity, dimension, and local entropies: a survey. Rev. Un. Mat. Argentina 52(2), 81–103 (2011)

    MATH  MathSciNet  Google Scholar 

  21. Tuominen, H.: Orlicz-Sobolev spaces on metric measure spaces. Ann. Acad. Sci. Fenn. Math. Diss. (135):86. Dissertation, University of Jyväskylä, Jyväskylä (2004)

  22. Zähle, U.: Random fractals generated by random cutouts. Math. Nachr. 116, 27–52 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zajíček, L.: Porosity and \(\sigma \)-porosity. Real Anal. Exchange 13(2), 314–350 (1987/88)

Download references

Acknowledgments

CC and ER acknowledge the support of the Vilho, Yrjö, and Kalle Väisälä foundation. CC and VS acknowledge support from the Centre of Excellence in Analysis and Dynamics Research funded by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomo Ojala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Ojala, T., Rossi, E. et al. Fractal Percolation, Porosity, and Dimension. J Theor Probab 30, 1471–1498 (2017). https://doi.org/10.1007/s10959-016-0680-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0680-x

Keywords

Mathematics Subject Classification (2010)

Navigation