Skip to main content
Log in

Semicircle Law for a Matrix Ensemble with Dependent Entries

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study ensembles of random symmetric matrices whose entries exhibit certain correlations. Examples are distributions of Curie–Weiss type. We provide a criterion on the correlations ensuring the validity of Wigner’s semicircle law for the eigenvalue distribution measure. In case of Curie–Weiss distributions, this criterion applies above the critical temperature (i.e., \(\beta \,<\,1\)). We also investigate the largest eigenvalue of certain ensembles of Curie–Weiss type and find a transition in its behavior at the critical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D.: Exchangeability and related topics. In: Lecture Notes in Mathematics 117, (Springer, 1985), pp. 1–198

  2. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  3. Arnold, L.: On Wigner’s semicircle law for the eigenvalues of random matrices. Z. Wahrsch. Verw. Gebiete 19, 191–198 (1971)

    Article  MATH  Google Scholar 

  4. Bai, Z., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Springer, New York (2010)

    Book  MATH  Google Scholar 

  5. Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryc, W., Dembo, A., Jiang, T.: Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34, 1–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatterjee, S.: A generalization of the Lindeberg principle. Ann. Probab. 34, 2061–2076 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (1985)

    Book  MATH  Google Scholar 

  9. de Finetti, B.: Funzione caratteristica di un fenomeno aleatorio, Atti della R. Academia Nazionale dei Lincei, Serie 6. Memorie, Classe di Scienze Fisiche, Mathematice e Naturale, 4, 251–299 (1931)

  10. Friesen, O., Löwe, M.: The semicircle law for matrices with independent diagonals. J. Theor. Probab. 26, 1084–1096 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friesen, O., Löwe, M.: A phase transition for the limiting spectral density of random matrices. Electron. J. Probab. 18, 1–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Götze, F., Naumov, A., Tikhomirov, A.: Semicircle Law for a Class of Random Matrices with Dependent Entries, Preprint arXiv:1211.0389v2

  13. Götze, F., Tikhomirov, A.: Limit theorems for spectra of random matrices with martingale structure. Theory Probab. Appl. 51, 42–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kirsch, W.: A Review of the Moment Method, in preparation

  15. Latała, R.: Some estimates of norms of random matrices. Proc. Am. Math. Soc. 133, 1273–1282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Olver, F.: Asymptotics and Special Functions. Academic Press, Waltham (1974)

    MATH  Google Scholar 

  17. Pastur, L.: Spectra of random self adjoint operators. Russian Math. Surv. 28, 1–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pastur, L., Sherbina, M.: Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs 171. AMS, Providence (2011)

    Google Scholar 

  19. Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  20. Schenker, J., Schulz-Baldes, H.: Semicircle law and freeness for random matrices with symmetries or correlations. Math. Res. Lett. 12, 531–542 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tao, T.: Topics in Random Matrix Theory. AMS, Providence (2012)

    Book  MATH  Google Scholar 

  22. Thompson, C.: Mathematical Statistical Mechanics. Princeton University Press, Princeton (1979)

    MATH  Google Scholar 

  23. Wigner, E.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–328 (1958)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Matthias Löwe, Münster, and Wolfgang Spitzer, Hagen, for valuable discussion. Two of us (WK and SW) would like to thank the Institute for Advanced Study in Princeton, USA, where part of this work was done, for support and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Kirsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochstättler, W., Kirsch, W. & Warzel, S. Semicircle Law for a Matrix Ensemble with Dependent Entries. J Theor Probab 29, 1047–1068 (2016). https://doi.org/10.1007/s10959-015-0602-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-015-0602-3

Keywords

Mathematics Subject Classification (2010)

Navigation