Skip to main content
Log in

On the Loss of the Semimartingale Property at the Hitting Time of a Level

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper studies the loss of the semimartingale property of the process \(g(Y)\) at the time a one-dimensional diffusion \(Y\) hits a level, where \(g\) is a difference of two convex functions. We show that the process \(g(Y)\) can fail to be a semimartingale in two ways only, which leads to a natural definition of non-semimartingales of the first and second kind. We give a deterministic if-and-only-if condition (in terms of \(g\) and the coefficients of \(Y\)) for \(g(Y)\) to fall into one of the two classes of processes, which yields a characterisation for the loss of the semimartingale property. A number of applications of the results in the theory of stochastic processes and real analysis are given: e.g. we construct an adapted diffusion \(Y\) on \([0,\infty )\) and a predictable finite stopping time \(\zeta \) such that \(Y\) is a local semimartingale on the stochastic interval \([0,\zeta )\), continuous at \(\zeta \) and constant after \(\zeta \), but is not a semimartingale on \([0,\infty )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that if \(Y\) were allowed to exit at an infinite endpoint, then \(Y\) would clearly fail to be a semimartingale.

References

  1. Assing, S.: Homogene Stochastische Differentialgleichungen mit gewöhnlicher Drift. Promotionsschrift. Friedrich-Schiller-Universität, Jena (1994)

    Google Scholar 

  2. Cherny, A., Engelbert, H.-J.: Singular Stochastic Differential Equations, volume 1858 of Lecture Notes in Mathematics. Springer, Berlin (2005)

  3. Çinlar, E., Jacod, J., Protter, P., Sharpe, M.J.: Semimartingales and Markov processes. Z. Wahrsch. Verw. Gebiete 54(2), 161–219 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Engelbert, H.-J., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. I. Math. Nachr. 143, 167–184 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Engelbert, H.-J., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. III. Math. Nachr. 151, 149–197 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jacod, J.: Calcul Stochastique et Problèmes de Martingales, volume 714 of Lecture Notes in Mathematics. Springer, Berlin (1979)

  7. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, volume 288 of Grundlehren der Mathematischen Wissenschaften, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  8. Jeulin, T.: Semi-martingales et Grossissement d’une Filtration, volume 833 of Lecture Notes in Mathematics. Springer, Berlin (1980)

  9. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, volume 113 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1991)

    Google Scholar 

  10. Maisonneuve, B.: Une mise au point sur les martingales locales continues définies sur un intervalle stochastique. In Séminaire de Probabilités, XI (Univ. Strasbourg, Strasbourg, 1975/1976). Lecture Notes in Mathematics, vol. 581, pp. 435–445. Springer, Berlin (1977)

  11. Mijatović, A., Urusov, M.: Convergence of integral functionals of one-dimensional diffusions. Electron. Commun. Probab. 17, 1–13 (2012)

    Article  MathSciNet  Google Scholar 

  12. Mijatović, A., Urusov, M.: On the martingale property of certain local martingales. Probab. Theory Relat. Fields 152(1), 1–30 (2012)

    Article  MATH  Google Scholar 

  13. Protter, P.E.: Stochastic Integration and Differential Equations, volume 21 of Stochastic Modelling and Applied Probability, 2nd edn. Springer, Berlin (2005). Version 2.1, Corrected third printing

  14. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, volume 293 of Grundlehren der Mathematischen Wissenschaften, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  15. Sharpe, M.J.: Closing values of martingales with finite lifetimes. In: Seminar on Stochastic Processes, 1991 (Los Angeles, CA, 1991), volume 29 of Progr. Probab., pp. 169–186. Birkhäuser Boston, Boston, MA (1992)

  16. Sharpe, M.J.: Martingales on random sets and the strong martingale property. Electron. J. Probab. 5(1), 17 (electronic) (2000)

    Google Scholar 

  17. Yan, J.A.: Martingales locales sur un ouvert droit optionnel. Stochastics 8(3), 161–180 (1982/83)

    Google Scholar 

  18. Yor, M.: Un example de processus qui n’est pas semi-martingale. In: Temps Locaux, volume 52 and 53 of Astérisque, pp. 219–222. Société Mathématique de France, Paris (1978)

  19. Zheng, W.A.: Semimartingales in predictable random open sets. In: Seminar on Probability, XVI, volume 920 of Lecture Notes in Mathematics, pp. 370–379. Springer, Berlin (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Urusov.

Additional information

We are grateful to Francis Hirsch for a helpful discussion. We thank Nicholas Bingham and the anonymous referee for the comments that helped improve the paper.

Appendices

Appendix 1: Bessel Process of Dimension \(\delta \in (0,1)\) Is Not a Semimartingale

It is known that a Bessel process of dimension \(\delta \in (0,1)\) is not a semimartingale. However, we did not find a direct reference for this. We think this can be deduced from the general Theorem 7.9 in [3], but this does not look straightforward. Therefore, we now present a direct proof.

Let \(x_{0}\ge 0\). Consider a squared Bessel process \(Y\) of dimension \(\delta \in (0,1)\) starting from \(x_{0}^{2}\), i.e. \(Y\) satisfies

$$\begin{aligned} Y_{t}=x_{0}^{2}+\delta t+\int \limits _{0}^{t}2\sqrt{Y_{s}}\,{\hbox {d}}W_{s}, \quad t\ge 0, \end{aligned}$$
(8.1)

where \(W\) is a Brownian motion. It is well known that SDE (8.1) has a pathwise unique strong solution, which is nonnegative, and it holds

$$\begin{aligned} \int \limits _{0}^{\infty }I(Y_{s}=0)\,{\hbox {d}}s=0\quad \text {a.s.} \end{aligned}$$
(8.2)

(see [14, Ch. XI, § 1]). A Bessel process of dimension \(\delta \in (0,1)\) starting from \(x_{0}\) is by definition

$$\begin{aligned} \rho _{t}:=\sqrt{Y_{t}},\quad t\ge 0. \end{aligned}$$

Assume \(\rho =x_{0}+M+A\) for a continuous local martingale \(M\) and a continuous finite variation process \(A\) with \(M_{0}=A_{0}=0\). In particular, \(\rho \) has a continuous in \(t\) and càdlàg in \(a\) version \((L_{t}^{a}(\rho );t\ge 0,a\in {\mathbb {R}})\) of local time. The process \(\int _{0}^{.}I(\rho _{s}=0)\,{\hbox {d}}M_{s}\) is a continuous local martingale starting from \(0\) with the quadratic variation

$$\begin{aligned} \int \limits _{0}^{t}I(\rho _{s}=0)\,{\hbox {d}}{{{\langle }} M,M{{\rangle }}}_{s}&= \int \limits _{0}^{t}I(\rho _{s}=0)\,{\hbox {d}}{{{\langle }} \rho ,\rho {{\rangle }}}_{s}\\&= \int \limits _{{\mathbb {R}}}I_{\{0\}}(a)L_{t}^{a}(\rho )\, {\hbox {d}}a=0 \quad \text {a.s.,}\quad t\ge 0, \end{aligned}$$

where the second equality follows from the occupation times formula (see [14, Ch. VI, Cor. 1.6]), i.e.

$$\begin{aligned} \int \limits _{0}^{t}I(\rho _{s}=0)\,{\hbox {d}}M_{s}=0 \quad \text {a.s.,}\quad t\ge 0. \end{aligned}$$
(8.3)

Since \(Y=\rho ^{2}\), we have

$$\begin{aligned} Y_{t}=x_{0}^{2}+\int \limits _{0}^{t}2\rho _{s}\,{\hbox {d}}M_{s} +\int \limits _{0}^{t}(2\rho _{s}\,{\hbox {d}}A_{s}+{\hbox {d}}{{{\langle }}\rho ,\rho {{\rangle }}}_{s}), \quad t\ge 0. \end{aligned}$$
(8.4)

Comparing decompositions (8.1) and (8.4) and using (8.3) and (8.2), we obtain

$$\begin{aligned} M_{t}=\int \limits _{0}^{t}I(\rho _{s}\ne 0)\,{\hbox {d}}M_{s} =\int \limits _{0}^{t}I(\rho _{s}\ne 0)\,{\hbox {d}}W_{s}=W_{t} \quad \text {a.s.,}\quad t\ge 0. \end{aligned}$$

Then \({{{\langle }}\rho ,\rho {{\rangle }}}_{t}={{{\langle }} M,M{{\rangle }}}_{t}=t\), hence, by (8.1) and (8.4),

$$\begin{aligned} \int \limits _{0}^{t}2\rho _{s}\,{\hbox {d}}A_{s} =(\delta -1)t,\quad t\ge 0, \end{aligned}$$

which yields

$$\begin{aligned} A_{t}=\int \limits _{0}^{t}I(\rho _{s}=0)\,{\hbox {d}}A_{s} +\int \limits _{0}^{t}I(\rho _{s}\ne 0) \frac{\delta -1}{2\rho _{s}}\,{\hbox {d}}s \quad \text {a.s.,}\quad t\ge 0. \end{aligned}$$
(8.5)

By the occupation times formula, for the term \(\int _{0}^{t}I(\rho _{s}\ne 0) \frac{\delta -1}{2\rho _{s}}\,{\hbox {d}}s\) to be finite, we necessarily have \(L_{t}^{0}(\rho )=0\) a.s., \(t\ge 0\). Furthermore, \(L_{t}^{0-}(\rho )=0\) a.s., \(t\ge 0\), because \(\rho \) is nonnegative. By [14, Ch. VI, Th. 1.7],

$$\begin{aligned} \int \limits _{0}^{t}I(\rho _{s}=0)\,{\hbox {d}}A_{s} =\frac{1}{2}(L_{t}^{0}(\rho )-L_{t}^{0-}(\rho ))=0 \quad \text {a.s.,}\quad t\ge 0. \end{aligned}$$

Thus, using (8.5), we get that \(\rho \) is a nonnegative global (i.e. on \([0,\infty )\)) solution of the SDE

$$\begin{aligned} {\hbox {d}}\rho _{t} =I(\rho _{t}\ne 0)\frac{\delta -1}{2\rho _{t}}\,{\hbox {d}}t +{\hbox {d}}W_{t}. \end{aligned}$$
(8.6)

But, by [2, Th. 2.13], the latter SDE does not have a nonnegative global solution. Here is a description of what happens: the singular point \(0\) of SDE (8.6) has right type 1, which is one of non-entrance types, in the terminology of [2], that is, after \(\rho \) reaches \(0\), which happens at a finite time with probability \(1\), it cannot be continued in the positive direction (also see [2, Sec. 2.4]). The obtained contradiction completes the proof.

Appendix 2: Behaviour of One-Dimensional Diffusions

Now we state some well-known results about the behaviour of a one-dimensional diffusion \(Y\) of (2.1) with the coefficients satisfying (2.2) and (2.3). These results follow from the construction of solutions of (2.1) (see e.g. [5] or [9, Ch. 5.5] or [2, Ch. 2 and Ch. 4]) or can be deduced from the results in [4, Sec. 1.5].

Proposition 9.1

For any \(a\in J\), with

$$\begin{aligned} \tau ^{Y}_{a}:=\inf \{t\ge 0:Y_{t}=a\} \qquad (\inf \emptyset :=\infty ), \end{aligned}$$

we have \({\mathsf {P}}(\tau ^Y_a<\infty )>0\).

Let us consider the sets

$$\begin{aligned} A&=\left\{ \zeta =\infty ,\;\limsup _{t\rightarrow \infty }Y_t=r,\;\liminf _{t\rightarrow \infty }Y_t=l\right\} ,\\ B_r&=\left\{ \zeta =\infty ,\;\lim _{t\rightarrow \infty }Y_t=r\right\} ,\\ C_r&=\left\{ \zeta <\infty ,\;\lim _{t\uparrow \zeta }Y_t=r\right\} ,\\ B_l&=\left\{ \zeta =\infty ,\;\lim _{t\rightarrow \infty }Y_t=l\right\} ,\\ C_l&=\left\{ \zeta <\infty ,\;\lim _{t\uparrow \zeta }Y_t=l\right\} . \end{aligned}$$

Proposition 9.2

Either \({\mathsf {P}}(A)=1\) or \({\mathsf {P}}(B_r\cup B_l\cup C_r\cup C_l)=1\).

Proposition 9.3

  1. (i)

    \({\mathsf {P}}(B_r\cup C_r)=0\) holds if and only if \(s(r)=\infty \).

  2. (ii)

    \({\mathsf {P}}(B_l\cup C_l)=0\) holds if and only if \(s(l)=-\infty \).

In particular, we get that \({\mathsf {P}}(A)=1\) holds if and only if \(s(r)=\infty \), \(s(l)=-\infty \).

Proposition 9.4

Assume that \(s(r)<\infty \). Then either \({\mathsf {P}}(B_r)>0,\, {\mathsf {P}}(C_r)=0\) or \({\mathsf {P}}(B_r)=0\), \({\mathsf {P}}(C_r)>0\). Furthermore, we have

$$\begin{aligned} {\mathsf {P}}\left( \lim _{t\uparrow \zeta }Y_t=r,\;\;Y_t>a\;\forall t\in [0,\zeta )\right) >0 \end{aligned}$$

for any \(a<x_0\).

Proposition 9.5

(Feller’s test for explosions). We have \({\mathsf {P}}(B_r)=0\), \({\mathsf {P}}(C_r)>0\) if and only if

$$\begin{aligned} s(r)<\infty \quad \text {and}\quad \frac{s(r)-s}{\rho \sigma ^2}\in L^1_{\mathrm{loc}}(r-). \end{aligned}$$

Clearly, Propositions 9.4 and 9.5, which contain statements about the behaviour of one-dimensional diffusions at the endpoint \(r\), have their analogues for the behaviour at \(l\). Feller’s test for explosions in this form is taken from [2, Sec. 4.1]. For a different (but equivalent) form see e.g. [9, Ch. 5, Th. 5.29].

Let us finally emphasise that the results stated in “Appendix 2” do not in general hold beyond (2.2) and (2.3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mijatović, A., Urusov, M. On the Loss of the Semimartingale Property at the Hitting Time of a Level. J Theor Probab 28, 892–922 (2015). https://doi.org/10.1007/s10959-013-0527-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-013-0527-7

Keywords

Mathematics Subject Classification (2010)

Navigation