Skip to main content
Log in

Partial Linear Eigenvalue Statistics for Wigner and Sample Covariance Random Matrices

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let \(M_n\) be an \(n \times n\) Wigner or sample covariance random matrix, and let \(\mu _1(M_n), \mu _2(M_n), \ldots , \mu _n(M_n)\) denote the randomly ordered eigenvalues of \(M_n\). We study the fluctuations of the partial linear eigenvalue statistics

$$\begin{aligned} \sum _{i=1}^{n-k} f(\mu _i(M_n)) \end{aligned}$$

as \(n \rightarrow \infty \) for sufficiently nice test functions \(f\). We consider both the cases when \(k\) is fixed and when \(\min \{k,n-k\}\) tends to infinity with \(n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The conclusion of the Marchenko–Pastur law (Theorem 7) can be equivalently stated as

    $$\begin{aligned} \frac{\#\{1 \le i \le n : \lambda (A_n) \in I\}}{n} \longrightarrow \int \limits _I \rho _\mathrm{MP } (x) \mathrm{d}x \end{aligned}$$

    almost surely as \(n \rightarrow \infty \), for any fixed interval \(I\). The local Marchenko–Pastur law refers to a similar conclusion holding when the interval \(I\) is allowed to change with \(n\). Of particular interest is the case when the length of the interval decreases as \(n\) tends to infinity; see for instance [6] and references therein.

References

  1. Anderson, G.W., Zeitouni, O.: CLT for a band matrix model. Probab. Theory Relat. Fields 134, 283–338 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z.D., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Mathematics Monograph Series 2. Science Press, Beijing (2006)

    Google Scholar 

  3. Bai, Z.D., Silverstein, J.: CLT for linear spectral statistics of large-dimensional sample covariance matrix. Ann. Probab. 32, 553–605 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, Z., Pan, G., Zhou, W.: Central limit theorem for partial linear eigenvalue statistics of Wigner matrices. available ar arXiv:1206.0508 [math.PR]

  5. Bourgade, P., Yau, H.-T., Yin, J.: Local circular law for random matrices. Available at arXiv:1206.1449 [math.PR]

  6. Cacciapuoti, C., Maltsev, A., Schlein, B.: Local Marchenko–Pastur law at the hard edge of sample covariance matrices. Available at arXiv:1206.1730 [math-ph]

  7. Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. Studies in applied probability. J. Appl. Probab. 31A, 49–62 (1994)

    Article  MathSciNet  Google Scholar 

  8. Diaconis, P., Evans, S.N.: Linear functionals of eigenvalues of random matrices. Trans. Am. Math. Soc. 353(7), 2615–2633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erdos, L.: Private communication

  10. Erdos, L., Yau, H-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Available at arXiv:1007.4652v7 [math-ph]

  11. Erdős, P., Rényi, A.: On the central limit theorem for samples from a finite population. Magyar Tud. Akad. Mat. Kutató Int. Közl. 4, 49–61 (1959)

    Google Scholar 

  12. Golinski, B.L., Ibragimov, I.A.: On Szegó’s limit theorem. U.S.S.R. Izv. 5(2), 421–446 (1971)

    Google Scholar 

  13. Hájek, J.: Limiting distributions in simple random sampling from a finite population. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5, 361–374 (1960)

    MATH  Google Scholar 

  14. Hájek, J.: Collected Works of Jaroslav Hájek—with Commentary. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, Chichester (1998). Compiled and with a preface by M. Hušková, R. Beran and V. Dupač

  15. Hunter, J.K., Nachtergaele, B.: Applied Analysis. World Scientific Publishing Co., Inc., River Edge, NJ (2001)

    Book  Google Scholar 

  16. Johansson, K.: On Szegö asymptotic formula for Toeplitz determinants and generalizations. Bull. des Sciences Mathematiques 112, 257–304 (1988)

    Google Scholar 

  17. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91, 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kac, M.: Toeplitz matrices, transation kernels and a related problem in probability theory. Duke. Math. J. 21, 501–509 (1954)

    Article  MathSciNet  Google Scholar 

  19. Lee, J.O., Yin, J.: A necessary and sufficient condition for edge universality of Wigner matrices. Available at arXiv:1206.2251 [math.PR]

  20. Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37, 1778–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marchenko, V., Pastur, L.: Distribution of eigenvalues of some sets of random matrices. Math USSR-Sb. 1, 457–486 (1967)

    Article  Google Scholar 

  22. Shcherbina, M.: Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. available at arXiv:1101.3249v1 [math-ph]

  23. Sinai, Y., Soshnikov, A.: Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Bol. Soc. Brasil. Mat. (N.S.) 29, 1–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Soshnikov, A.: The central limt theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab. 28, 1353–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Soshnikov, A.: A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108, 1033–1056 (2002)

    Article  MathSciNet  Google Scholar 

  26. Sosoe, P., Wang, P.: Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices. Available at arXiv:1210.5666 [math.PR]

  27. Szego, G.: On certain Hermitian form associated with the Fourier series of a positive function. Comm. séminaire Math. de l’Univ. de Lund, tome supplémentaire, dédié à Marcel Riesz, pp. 228–237 (1952)

  28. Wigner, E.P.: On the distributions of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Persi Diaconis and Laszlo Erdös for useful comments. We also thank the anonymous referee for many helpful comments, corrections, and references. A.S. has been supported in part by the NSF grant DMS-1007558. S.O. has been supported by grant AFOSAR-FA-9550-12-1-0083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean O’Rourke.

Appendix: Proof of Theorem 15

Appendix: Proof of Theorem 15

This section is devoted to the proof of Theorem 15. We will need the following version of [19, Theorem 3.6].

Theorem 19

[19] Let \(M_n = \frac{1}{\sqrt{n}} W_n\) be a real symmetric Wigner matrix where \(W_n = (w_{ij})_{1 \le i,j \le n}\). Suppose there exist constants \(C_1,c_1>0\) and \(0 < \varepsilon < 1/2\) such that

$$\begin{aligned} \sup _{1 \le i < j \le n} \mathbb{E }[w_{ij}^4] \le C_1 \quad \text{ and }\quad \sup _{1 \le i < j \le n} \mathbb{P }( |w_{ij}| > n^{1/2 - \varepsilon } ) \le e^{-n^{c_1}}. \end{aligned}$$

Then, there exist constants \(c>0\) and \(n_0\) (which depend only on \(C_1, \varepsilon \), and \(\sigma \) from Definition 1) such that the event

$$\begin{aligned} \bigcup _{j=1}^n \left\{ |\lambda _j(M_n) - \eta _j| \le (\log n)^{c \log \log n} n^{-2/3} [\min \{j,n-j+1\}]^{-1/3} \right\} \end{aligned}$$

holds with overwhelming probability for any \(n > n_0\).

Proof of Theorem 15

Set \(\varepsilon _n := n^{1/2 - \varepsilon }\); we remind the reader that \(0 < \varepsilon < 1/2\) and hence \(\varepsilon _n \rightarrow \infty \) as \(n \rightarrow \infty \). We begin with a truncation. Let

$$\begin{aligned} \hat{w}_{ij} := w_{ij} \mathbf 1 _{\{|w_{ij}| \le \varepsilon _n\}} \quad \text{ for }\quad 1 \le i \le j \le n. \end{aligned}$$

We define the values \( \mu _{ij} := \mathbb{E }\hat{w}_{ij}\) and \( \tau ^2_{ij} := \mathbb{E }[w_{ij}^2] - \mathbb{E }[ \hat{w}_{ij}^2 ]\) for \(1 \le i \le j \le n\). Then by (9), we have

$$\begin{aligned} \sup _{1 \le i < j \le n} |\mu _{ij}| \le \frac{C_1}{\varepsilon _n^3}, \quad \sup _{1 \le i \le n} |\mu _{ii}| \le \frac{\sigma ^2}{\varepsilon _n} \end{aligned}$$
(20)
$$\begin{aligned} \sup _{1 \le i < j \le n} \tau _{ij}^2 \le \frac{C_1}{\varepsilon _n^2}, \quad \sup _{1 \le i \le n} \tau _{ii}^2 \le \sigma ^2. \end{aligned}$$
(21)

For \(1 \le i \le j \le n\), define the random variable \(\tilde{w}_{ij}\) as a mixture of

  • \(\hat{w}_{ij}\) with probability \(1 - \frac{|\mu _{ij}|}{\varepsilon _n} - \frac{\tau _{ij}^2}{\varepsilon _n^2}\) and

  • \(z_{ij}\) with probability \(\frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2}\),

where \(z_{ij}, 1 \le i \le j \le n\) are independent Bernoulli random variables independent of \(W_n\). Set \(\tilde{w}_{ji} = \tilde{w}_{ij}\) for \(1 \le i < j \le n\). Let \(\tilde{W}_n = (\tilde{w}_{ij})_{1 \le i,j \le n}\) and \(\tilde{M}_n = \frac{1}{\sqrt{n}} \tilde{W}_n\).

We now show that there exist Bernoulli random variables \(z_{ij}\) such that \(\tilde{M}_n\) is a real symmetric Wigner matrix that satisfies

$$\begin{aligned} \sup _{1 \le i \le j \le n} |\tilde{w}_{ij}| \le n^{1/2 - \varepsilon /2} \quad \text{ almost } \text{ surely } \end{aligned}$$
(22)

and

$$\begin{aligned} \sup _{1 \le i < j \le n} \mathbb{E }[ \tilde{w}_{ij}^4] \le 513 C_1. \end{aligned}$$
(23)

In particular, we will construct \(z_{ij}\) to be a Bernoulli random variable, symmetric about its mean, such that its mean and second moment satisfy

$$\begin{aligned} 0&= \mu _{ij} \left( 1 - \frac{|\mu _{ij}|}{\varepsilon _n} - \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) + \mathbb{E }[z_{ij}] \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) \end{aligned}$$
(24)
$$\begin{aligned} \mathbb{E }\left[ w_{ij}^2\right]&= \left( \mathbb{E }\left[ w_{ij}^2\right] - \tau _{ij}^2\right) \left( 1 - \frac{|\mu _{ij}|}{\varepsilon _n} - \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) + \mathbb{E }[z_{ij}^2] \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) \end{aligned}$$
(25)

for \(1 \le i \le j \le n\). We first note that, by definition of \(\tilde{w}_{ij}\), we only need to consider the case when \(\frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} > 0\). Suppose \(a_{ij},b_{ij}\) are real numbers that satisfy

$$\begin{aligned} 0&= \mu _{ij} \left( 1 - \frac{|\mu _{ij}|}{\varepsilon _n} - \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) + a_{ij} \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) \\ \mathbb{E }\left[ w_{ij}^2\right]&= \left( \mathbb{E }\left[ w_{ij}^2\right] - \tau _{ij}^2\right) \left( 1 - \frac{|\mu _{ij}|}{\varepsilon _n} - \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) + b_{ij}^2 \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) . \end{aligned}$$

From the first equation, we obtain

$$\begin{aligned} |a_{ij}| \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) \le |\mu _{ij}|. \end{aligned}$$
(26)

From the second equation, we have

$$\begin{aligned} b_{ij}^2 \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) = (\mathbb{E }[w_{ij}^2] - \tau _{ij}^2) \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) + \tau _{ij}^2 \ge \tau _{ij}^2. \end{aligned}$$
(27)

We now note that \(\tau _{ij}^2 \ge \varepsilon _n |\mu _{ij}|\) by definition of \(\hat{w}_{ij}\) and hence

$$\begin{aligned} \tau _{ij}^4 + \tau _{ij}^2|\mu _{ij}| \varepsilon _n - |\mu _{ij}|^2 \varepsilon _n^2 \ge 0. \end{aligned}$$

It then follows that

$$\begin{aligned} \tau _{ij}^2 \ge \frac{|\mu _{ij}|^2}{\left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) }. \end{aligned}$$
(28)

Combining (26), (27), and (28), we obtain

$$\begin{aligned} b_{ij}^2 \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) \ge \tau _{ij}^2 \ge \frac{\mu _{ij}^2}{\left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) } \ge a_{ij}^2 \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) \end{aligned}$$

and hence \(b_{ij}^2 \ge a_{ij}^2\). We can now define

$$\begin{aligned} z_{ij} := \left\{ \begin{array}{lr} a_{ij} + \sqrt{b_{ij}^2 - a_{ij}^2} &{} \text{ with } \text{ probability } 1/2 \\ a_{ij} - \sqrt{b_{ij}^2 - a_{ij}^2} &{} \text{ with } \text{ probability } 1/2 \end{array} \right. . \end{aligned}$$

It is straightforward to verify that \(z_{ij}\) has mean \(a_{ij}\) and second moment \(b_{ij}^2\).

By construction, \(\tilde{M}_n\) is a real symmetric Wigner matrix. We now verify (22) and (23). By solving equations (24) and (25) for \(\mathbb{E }[z_{ij}]\) and \(\mathbb{E }[z_{ij}^2]\) and applying the bounds (20) and (21), it follows that \(|z_{ij}| \le 4 \varepsilon _n\). Thus, we conclude that (22) holds for \(n\) sufficiently large.

We also have for \(1 \le i < j \le n\)

$$\begin{aligned} \mathbb{E }[\tilde{w}_{ij}^4]&= \mathbb{E }[\hat{w}_{ij}^4] \left( 1 - \frac{|\mu _{ij}|}{\varepsilon _n} - \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) + \mathbb{E }[z_{ij}^4] \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) \\&\le C_1 + (4 \varepsilon _n)^4 2 \frac{C_1}{\varepsilon _n^4} \\&\le 513 C_1 \end{aligned}$$

by (20) and (21). This verifies (23), and hence, \(\tilde{M}_n\) satisfies the conditions of Theorem 19.

By Theorem 19, there exists a constant \(c>0\) such that the event

$$\begin{aligned} \Omega _n := \bigcup _{j=1}^n \left\{ |\lambda _j(\tilde{M}_n) - \eta _j| \le (\log n)^{c \log \log n} n^{-2/3} [\min \{j,n-j+1\}]^{-1/3} \right\} \end{aligned}$$

holds with overwhelming probability. Thus, we obtain

$$\begin{aligned} \mathbb{P }&\left( \exists j : |\lambda _j(M_n) - \eta _j| \ge (\log n)^{c \log \log n} n^{-2/3} [\min \{j,n-j+1\}]^{-1/3} \right) \\&\qquad \qquad \le \mathbb{P }(\Omega _n^C) + \mathbb{P }(M_n \ne \tilde{M}_n). \end{aligned}$$

The proof of Theorem 15 is now complete by noting that

$$\begin{aligned} \mathbb{P }( M_n \ne \tilde{M}_n)&\le \sum _{i,j=1}^n \mathbb{P }(|w_{ij}| > \varepsilon _n) + \sum _{i,j=1}^n \left( \frac{|\mu _{ij}|}{\varepsilon _n} + \frac{\tau _{ij}^2}{\varepsilon _n^2} \right) \\&\le \frac{2}{\varepsilon _n^4} \sum _{1 \le i < j \le n} \mathbb{E }\left[ w_{ij}^4 \mathbf 1 _{\{|w_{ij}| > \varepsilon _n\}}\right] + \frac{2}{\varepsilon _n^2} \sum _{i =1}^n \mathbb{E }\left[ w_{ii}^2 \mathbf 1 _{\{|w_{ii}| > \varepsilon _n\}}\right] . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Rourke, S., Soshnikov, A. Partial Linear Eigenvalue Statistics for Wigner and Sample Covariance Random Matrices. J Theor Probab 28, 726–744 (2015). https://doi.org/10.1007/s10959-013-0491-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-013-0491-2

Keywords

Mathematics Subject Classification (2010)

Navigation