Skip to main content
Log in

Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

When some eigenvalues of a spiked additive deformation of a Wigner matrix or a spiked multiplicative deformation of a Wishart matrix separate from the bulk, we study how the corresponding eigenvectors project onto those of the perturbation. We point out that the subordination function relative to the free (additive or multiplicative) convolution plays an important part in the asymptotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  2. Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques. In: Panoramas et Synthèses, vol. 10. SMF, Paris (2000). English translation: Logarithmic Sobolev inequalities. In: Panoramas and Syntheses

    Google Scholar 

  3. Bai, Z.D.: Methodologies in spectral analysis of large-dimensional random matrices, a review. Stat. Sin. 9(3), 611–677 (1999). With comments by G.J. Rodgers and Jack W. Silverstein; and a rejoinder by the author

    MATH  Google Scholar 

  4. Bai, Z.D., Silverstein, J.W.: On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J. Multivar. Anal. 54, 175–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z.D., Silverstein, J.W.: No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26(1), 316–345 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, Z.D., Silverstein, J.W.: Spectral Analysis of Large-dimensional Random Matrices. Mathematics Monograph Series, vol. 2. Science Press, Beijing (2006)

    MATH  Google Scholar 

  7. Bai, Z.D., Yao, J.: Limit theorems for sample eigenvalues in a generalized spiked population model. ArXiv e-prints (2008)

  8. Bai, Z.D., Yin, Y.Q.: Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 16(4), 1729–1741 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, Z.D., Silverstein, J.W., Yin, Y.Q.: A note on the limit of the largest eigenvalue of a large-dimensional sample covariance matrix. J. Multivar. Anal. 26(2), 166–168 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baik, J., Silverstein, J.W.: Eigenvalues of large sample covariance matrices of spiked population models. J. Multivar. Anal. 97(6), 1382–1408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33(5), 1643–1697 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Belinschi, S.T., Bercovici, H.: A new approach to subordination results in free probability. J. Anal. Math. 101, 357–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benaych-Georges, F., Rao, R.N.: The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227(1), 494–521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benaych-Georges, F., Rao, R.N.: The singular values and vectors of low rank perturbations of large rectangular random matrices. ArXiv e-prints (2011). arXiv:1103.2221

  15. Bercovici, H., Voiculescu, D.: Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42(3), 733–773 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Biane, P.: On the free convolution with a semi-circular distribution. Indiana Univ. Math. J. 46(3), 705–718 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Biane, P.: Processes with free increments. Math. Z. 227(1), 143–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Biane, P.: Free probability for probabilists. In: Quantum Probability Communications, vol. XI, QP–PQ, Grenoble, 1998. pp. 55–71. World Scientific, River Edge (2003)

    Chapter  Google Scholar 

  19. Bobkov, S.G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Capitaine, M., Donati-Martin, C.: Strong asymptotic freeness for Wigner and Wishart matrices. Indiana Univ. Math. J. 56(2), 767–803 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Capitaine, M., Donati-Martin, C., Féral, D.: The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. Ann. Probab. 37(1), 1–47 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Capitaine, M., Donati-Martin, C., Féral, D., Février, M.: Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of Wigner matrices. Electron. J. Probab. 16, 1750–1792 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Choi, S., Silverstein, J.W.: Analysis of the limiting spectral distribution of large dimensional random matrices. J. Multivar. Anal. 54, 295–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Doumerc, Y.: Quelques aspects du spectre des grandes matrices aléatoires. Mémoire de D.E.A.

  25. Dykema, K.: On certain free product factors via an extended matrix model. J. Funct. Anal. 112(1), 31–60 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Eisenstat, S.C., Ipsen, I.C.F.: Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices. BIT Numer. Math. 38(3), 502–509 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Féral, D., Péché, S.: The largest eigenvalue of rank one deformation of large Wigner matrices. Commun. Math. Phys. 272(1), 185–228 (2007)

    Article  MATH  Google Scholar 

  28. Füredi, Z., Komlós, J.: The eigenvalues of random symmetric matrices. Combinatorica 1(3), 233–241 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Geman, S.: A limit theorem for the norm of random matrices. Ann. Probab. 8(2), 252–261 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grenander, U., Silverstein, J.W.: Spectral analysis of networks with random topologies. SIAM J. Appl. Math. 32, 499–519 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Guionnet, A., Zegarlinski, B.: Lectures on logarithmic Sobolev inequalities. In: Séminaire de Probabilités, XXXVI. Lecture Notes in Math., vol. 1801. Springer, Berlin (2003)

    Google Scholar 

  32. Guionnet, A., Zeitouni, O.: Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5, 119–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Haagerup, U., Thorbjørnsen, S.: A new application of random matrices: \(\mathrm {Ext}(C^{*}_{\mathrm{red}}(F_{2}))\) is not a group. Ann. Math. 162(2), 711–775 (2005)

    Article  MATH  Google Scholar 

  34. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs, vol. 77. Am. Math. Soc., Providence (2000)

    MATH  Google Scholar 

  35. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990). Corrected reprint of the 1985 original

    MATH  Google Scholar 

  36. Johnstone, I.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat. 29, 295–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Khorunzhy, A.M., Khoruzhenko, B.A., Pastur, L.A.: Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37(10), 5033–5060 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Krishnaiah, P.R., Yin, Y.Q.: A limit theorem for the eigenvalues of product of two random matrices. J. Multivar. Anal. 13, 489–507 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ledoux, M.: The Concentration of Measure Phenomenon. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  40. Martchenko, A., Pastur, L.: Distribution of eigenvalues for some sets of random matrices. Math. USSR Sb. 1, 457–486 (1967)

    Article  Google Scholar 

  41. Mingo, J., Speicher, R.: Free probability and random matrices. Personal communication (2010)

  42. Paul, D.: Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Stat. Sin. 17(4), 1617–1642 (2007)

    MATH  Google Scholar 

  43. Péché, S.: Non-white Wishart ensembles. J. Multivar. Anal. 97(4), 874–894 (2006)

    Article  MATH  Google Scholar 

  44. Péché, S., Ledoit, O.: Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Relat. Fields 151, 233–264 (2011)

    Article  MATH  Google Scholar 

  45. Rao, N.R., Silverstein, J.W.: Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples. IEEE J. Sel. Top. Signal Process. 4(3), 468–480 (2010)

    Article  Google Scholar 

  46. Silverstein, J.W.: Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. Multivar. Anal. 55(4), 331–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Voiculescu, D.: Addition of certain non commuting random variables. J. Funct. Anal. 66, 323–346 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. Voiculescu, D.: Multiplication of certain non commuting random variables. J. Oper. Theory 18, 223–235 (1987)

    MathSciNet  MATH  Google Scholar 

  49. Voiculescu, D.: Limit laws for random matrices and free products. Invent. Math. 104(1), 201–220 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  50. Voiculescu, D.: The analogues of entropy and of Fisher’s information measure in free probability theory. I. Commun. Math. Phys. 155(1), 71–92 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Voiculescu, D.V., Dykema, K.J., Nica, A.: Free Random Variables. CRM Monograph Series, vol. 1. Am. Math. Soc., Providence (1992). A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis, on free groups

    MATH  Google Scholar 

  52. Wachter, K.W.: The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Probab. 6, 1–18 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yin, Y.Q.: Limiting spectral distribution for a class of random matrices. J. Multivar. Anal. 20, 50–68 (1986)

    Article  MATH  Google Scholar 

  56. Yin, Y.Q., Bai, Z.D., Krishnaiah, P.R.: On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Relat. Fields 78(4), 509–521 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Agence Nationale de la Recherche grant ANR-08-BLAN-0311-03.

I am grateful to Charles Bordenave for useful discussions. I would like to thank the anonymous referees for their careful reading and their pertinent comments which led to an overall improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Capitaine.

Appendix A

Appendix A

1.1 A.1 Poincaré Inequality and Concentration Inequalities

We first derive in this section concentration inequalities based on the Poincaré inequality. We refer the reader to the book [2]. A probability measure μ on \(\mathbb{R}\) is said to satisfy the Poincaré inequality with constant \(C_{\mathrm{PI}}\) if for any \(\mathcal{C}^{1}\) function \(f: \mathbb{R}\rightarrow\mathbb{C}\) such that f and f′ are in L 2(μ),

$$\mathbf{V}(f)\leq C_{\mathrm{PI}}\int\vert f' \vert^2\,d\mu,$$

with \(\mathbf{V}(f) = \int\vert f-\int f \,d\mu\vert^{2} \,d\mu\).

We refer the reader to [19] for a characterization of the measures on \(\mathbb{R}\) which satisfy a Poincaré inequality.

Remark A.1

If the law of a random variable X satisfies the Poincaré inequality with constant \(C_{\mathrm{PI}}\) then, for any fixed α≠0, the law of αX satisfies the Poincaré inequality with constant \(\alpha^{2} C_{\mathrm{PI}}\).

If a probability measure μ on \(\mathbb{R}\) satisfies the Poincaré inequality with constant \(C_{\mathrm{PI}}\) then the product measure μ M on \(\mathbb{R}^{M}\) satisfies the Poincaré inequality with constant \(C_{\mathrm{PI}}\) in the sense that for any differentiable function F such that F and its gradient ∇F are in L 2(μ M),

$$\mathbf{V}(f)\leq C_{\mathrm{PI}} \int\Vert\nabla F \Vert_2^2\,d\mu^{\otimes M}$$

with \(\mathbf{V}(f) = \int\vert f-\int f \,d\mu^{\otimes M} \vert^{2} \,d\mu^{\otimes M}\) (see Theorem 2.5 in [31]).

An important consequence of the Poincaré inequality is the following concentration result.

Lemma A.1

(Lemma 4.4.3 and Exercise 4.4.5 in [1] or Chap. 3 in [39])

Let \(\mathbb{P}\) be a probability measure on \(\mathbb{R^{M}}\) which satisfies a Poincaré inequality with constant \(C_{\mathrm{PI}}\). Then there exists K 1>0 and K 2>0 such that, for any Lipschitz function F on \(\mathbb{R}^{M}\) with Lipschitz constant \(\vert F \vert_{\mathrm{Lip}}\),

$$\forall\epsilon> 0, \quad\mathbb{P} \bigl(\big \vert F-\mathbb {E}_{\mathbb {P}}(F)\big\vert> \epsilon \bigr) \leq K_1 \exp \biggl(-\frac{\epsilon }{K_2 \sqrt{C_{\mathrm{PI}}} \vert F \vert_{\mathrm{Lip}}}\biggr).$$

1.2 A.2 Technical Tools

We need the following result on the extension of Lipschitz functions on \(\mathbb{R}\) to the Hermitian matrices.

Lemma A.2

(See [24])

Let f be a real \(C_{\mathcal{L}}\)-Lipschitz function on \(\mathbb{R}\). Then its extension on the N×N Hermitian matrices is \(C_{\mathcal{L}}\)-Lipschitz with respect to the norm \(\Vert M\Vert_{2}=\{\operatorname{Tr} (MM^{*})\}^{\frac{1}{2}}\).

Proof

Let A and B be N×N Hermitian matrices. Let us consider their spectral decompositions

$$A=\sum_i \lambda_i(A)P^{(A)}_i$$

and

$$B=\sum_i \lambda_i(B)P^{(B)}_i.$$

We have

Now, since \(\operatorname{Tr}( P^{(A)}_{i} P^{(B)}_{j})\geq0\), we can deduce that

$$\big\Vert f(B) -f(A) \big\Vert_2^2 \leq\sum _{i,j} C_\mathcal{L}^2\bigl(\lambda_i(A)-\lambda_j(B)\bigr)^2\operatorname{Tr}\bigl(P^{(A)}_i P^{(B)}_j\bigr)=C_\mathcal{L}^2 \Vert B-A \Vert_2^2.$$

 □

We recall here some useful properties of the resolvent (see [20, 37]).

Lemma A.3

For a N×N Hermitian or symmetric matrix M, for any \(z \in\mathbb{C}\setminus \operatorname{Spect}(M)\), we denote by G(z):=(zI N M)−1 the resolvent of M.

Let \(z \in\mathbb{C}\setminus\mathbb{R}\),

  1. (i)

    G(z)∥≤|ℑz|−1 where ∥.∥ denotes the operator norm.

  2. (ii)

    |G(z) ij |≤|ℑz|−1 for all i,j=1,…,N.

  3. (iii)

    Let \(z \in\mathbb{C}\) such that |z|>∥M∥; we have

    $$\big\Vert G(z)\big \Vert\leq\frac{1}{|z| - \Vert M \Vert}.$$

We recall here the following classical result due to Weyl.

Lemma A.4

(Theorem 4.3.7 of [35]) Let B and C be two N×N Hermitian matrices. For any pair of integers j,k such that 1≤j,kN and j+kN+1, we have

$$\lambda_{j+k-1} (B+C) \leq\lambda_{j}(B) +\lambda_{k}(C).$$

For any pair of integers j,k such that 1≤j,kN and j+kN+1, we have

$$\lambda_j(B) + \lambda_k(C) \leq\lambda_{j+k-N}(B+C).$$

The following result on quadratic forms is of basic use in the sample covariance matrix setting. Note that, a complex random variable x will be said standardized if \(\mathbb{E}(x)=0\) and \(\mathbb {E}(\vert x \vert^{2})=1\).

Proposition A.1

(Lemma 2.7 of [5])

Let B=(b ij ) be a N×N matrix and Y N be a vector of size N which contains i.i.d. standardized entries with bounded fourth moment. Then there is a constant K>0 such that

$$\mathbb{E}\big\vert Y_N^* B Y_N - \operatorname{Tr} B\big\vert^2 \leq K \operatorname{Tr} \bigl(BB^*\bigr).$$

The following technical lemma is fundamental in this paper. We refer the reader to the Appendix of [20] where it is proved using the ideas of [33].

Lemma A.5

Let h be an analytic function on \(\mathbb{C}\setminus\mathbb{R}\) which satisfies

$$ \big\vert h(z)\big\vert\leq\bigl(\vert z\vert+K\bigr)^\alpha P\bigl(\vert\Im z\vert^{-1}\bigr)$$

and φ be in \(\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})\) with compact support. Then,

$$\limsup_{y\rightarrow0^+}\bigg\vert\int_\mathbb{R}\varphi(x)h(x+iy)\,dx\bigg\vert< + \infty.$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capitaine, M. Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices. J Theor Probab 26, 595–648 (2013). https://doi.org/10.1007/s10959-012-0416-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-012-0416-5

Keywords

Mathematics Subject Classification

Navigation