Skip to main content
Log in

Malliavin Calculus for Fractional Delay Equations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper we study the existence of a unique solution to a general class of Young delay differential equations driven by a Hölder continuous function with parameter greater that 1/2 via the Young integration setting. Then some estimates of the solution are obtained, which allow to show that the solution of a delay differential equation driven by a fractional Brownian motion (fBm) with Hurst parameter H>1/2 has a C -density. To this purpose, we use Malliavin calculus based on the Fréchet differentiability in the directions of the reproducing kernel Hilbert space associated with fBm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alòs, E., León, J.A., Nualart, D.: Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less that 1/2. Taiwan. J. Math. 5, 609–632 (2001)

    MATH  Google Scholar 

  2. Anderson, D.F.: A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J. Chem. Phys. 127 (2007)

  3. Balan, R.M., Tudor, C.A.: Stochastic heat equation with multiplicative fractional-colored noise. J. Theor. Probab. 23(3), 834–870 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besalú, M., Rovira, C.: Stochastic delay equations with non-negativity constraints driven by fractional Brownian motion. Arxiv Preprint (2010)

  5. Bratsun, D., Volfson, D., Tsimring, L., Hasty, J.: Delay-induced stochastic oscillations in gene regulation. PNAS 102, 14593–14598 (2005)

    Article  Google Scholar 

  6. Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, vol. 40. Springer, New York (2001)

    MATH  Google Scholar 

  7. Cass, T., Qian, Z., Tudor, J.: Non-linear evolution equations driven by rough paths. Arxiv Preprint (2009)

  8. Deya, A., Tindel, S.: Rough Volterra equations 1: the algebraic integration setting. Stoch. Dyn. 9(3), 437–477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deya, A., Tindel, S.: Rough Volterra equations 2: convolutional generalized integrals. Arxiv Preprint (2008)

  10. Deya, A., Gubinelli, M., Tindel, S.: Non-linear rough heat equations. Arxiv Preprint (2009)

  11. Fang, L., Sundar, P., Viens, F.: Two-dimensional stochastic Navier–Stokes equation with fractional Brownian noise. Preprint (2009)

  12. Ferrante, M., Rovira, C.: Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H>1/2. Bernoulli 12(1), 85–100 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Ferrante, M., Rovira, C.: Convergence of delay differential equations driven by fractional Brownian motion. Arxiv Preprint (2009)

  14. Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216, 86–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gubinelli, M., Lejay, A., Tindel, S.: Young integrals and SPDEs. Potential Anal. 25(4), 307–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gubinelli, M., Tindel, S.: Rough evolution equation. Ann. Probab. 38(1), 1–75 (2008)

    Article  MathSciNet  Google Scholar 

  17. Hairer, M., Ohashi, A.: Ergodicity theory of SDEs with extrinsic memory. Ann. Probab. 35(5), 1950–1977 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, Y., Nualart, D.: Differential equations driven by Hölder continuous functions of order greater than 1/2. In: Stochastic Analysis and Applications. Abel Symp., vol. 2, pp. 349–413. Springer, Berlin (2007)

    Chapter  Google Scholar 

  19. Kinnally, M., Williams, R.: On existence and uniqueness of stationary distributions for stochastic delay differential equations with positivity constraints. Electron. J. Probab. 15, 409–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kusuoka, S.: The non-linear transformation of Gaussian measures on Banach space and absolute continuity (I). J. Fac. Sci., Univ. Tokyo IA 29, 567–597(1982)

    MathSciNet  MATH  Google Scholar 

  21. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus. I. In: Stochastic Analysis, Katata/Kyoto, 1982. North-Holland Math. Library, vol. 32, pp. 271–306. North-Holland, Amsterdam (1984)

    Google Scholar 

  22. Lejay, A.: An introduction to rough paths. In: Séminaire de Probabilités 37. Lecture Notes in Mathematics, vol. 1832, pp. 1–59 (2003)

    Chapter  Google Scholar 

  23. Lyons, T., Qian, Z.: System Control and Rough Paths. Oxford University Press, London (2002)

    Book  MATH  Google Scholar 

  24. Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202(1), 277–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mather, W., Bennett, M., Hasty, J., Tsimring, L.: Delay-induced degrade-and-fire oscillations in small genetic circuits. Phys. Rev. Lett. 102, 1–4 (2009)

    Article  Google Scholar 

  26. Mohammed, S.-E.A.: Stochastic differential systems with memory: theory, examples and applications. In: Decreusefond, L., Gjerde, J., Øksendal, B., Üstünel, A.S. (eds.) Stochastic Analysis and Related Topics VI, pp. 1–77. Birkhäuser, Boston (1998)

    Chapter  Google Scholar 

  27. Neuenkirch, A., Nourdin, I., Tindel, S.: Delay equations driven by rough paths. Electron. J. Probab. 13(67), 2031–2068 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Nualart, D.: Malliavin Calculus and Related Topics. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Nualart, D.: Stochastic integration with respect to the fractional Brownian motion and applications. Contemp. Math. 336, 3–39 (2003)

    Article  MathSciNet  Google Scholar 

  30. Nualart, D., Rǎşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53(1), 55–81 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Nualart, D., Saussereau, B.: Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stoch. Process. Appl. 119(2), 391–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Paganini, F., Doyle, J., Low, S.: Scalable laws for stable network congestion control. In: Proceedings of the 40th IEEE Conference on Decision and Control, pp. 185–190. (2001)

    Google Scholar 

  33. Pipiras, V., Taqqu, M.S.: Integration questions related to fractional Brownian motion. Probab. Theory Relat. Fields 118(2), 251–291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Quer-Sardanyons, L., Tindel, S.: The 1-d wave equation driven by a fractional Brownian sheet. Stoch. Process. Appl. 117(10), 1448–1472 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Srikant, R.: The mathematics of Internet congestion control. In: Systems & Control: Foundations & Applications. Birkhäuser, Boston (2004)

    Google Scholar 

  36. Tindel, S., Torrecilla, I.: Fractional differential systems for H>1/4. Arxiv Preprint (2009)

  37. Young, L.C.: An inequality of the Hölder type, connected with Stieljes integration. Acta Math. 67, 251–282 (1936)

    Article  MathSciNet  Google Scholar 

  38. Zähle, M.: Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Relat. Fields 111, 333–374 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. León.

Additional information

J.A. León is partially supported by the CONACyT grant 98998. S. Tindel is partially supported by the ANR grant ECRU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

León, J.A., Tindel, S. Malliavin Calculus for Fractional Delay Equations. J Theor Probab 25, 854–889 (2012). https://doi.org/10.1007/s10959-011-0349-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-011-0349-4

Keywords

Mathematics Subject Classification (2000)

Navigation