Skip to main content
Log in

Absolute Continuity and Convergence in Variation for Distributions of Functionals of Poisson Point Measure

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

General sufficient conditions are given for absolute continuity and convergence in variation of the distributions of the functionals on the probability space generated by a Poisson point measure. The phase space of the Poisson point measure is supposed to be of the form \({\mathbb{R}}^{+}\times{\mathbb{U}}\), and its intensity measure to equal dt Π(du). We introduce the family of time stretching transformations of the configurations of the point measure. Sufficient conditions for absolute continuity and convergence in variation are given in terms of the time stretching transformations and the relative differential operators. These conditions are applied to solutions of SDEs driven by Poisson point measures, including SDEs with non-constant jump rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrova, D.E., Bogachev, V.I., Pilipenko, A.Yu.: On convergence in variation of the induced measures. Mat. Sb. 190(9), 3–20 (1999) (in Russian). Engl. transl. in Sb. Math. 190, 1229–1245 (1999)

    Google Scholar 

  2. Bally, V.: Integration by parts formula for locally smooth laws and applications to equations with jumps II. Mittag-Leffler Institute, Report No. 15, 2007/2008, fall

  3. Bichteler, K., Gravereaux, J.-B., Jacod, J.: Malliavin Calculus for Processes with Jumps. Gordon and Breach, New York (1987)

    MATH  Google Scholar 

  4. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  5. Bismut, J.M.: Calcul des variations stochastiques et processus de sauts. Zeit. Wahr. 63, 147–235 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bogachev, V.I.: Differentiable measures and the Malliavin calculus. J. Math. Sci. 87(5), 3577–3731 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bogachev, V.I., Smolyanov, O.G.: Analytical properties of infinite-dimensional distributions. Usp. Mat. Nauk 45(3), 3–83 (1990) (in Russian). Engl. transl. in Russ. Math. Surv. 45(3), 1–104 (1990)

    MathSciNet  Google Scholar 

  8. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. De Gruyter Studies in Math. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  9. Carlen, E., Pardoux, E.: Differential calculus and integration-by-parts on Poisson space. Math. Appl. 59, 63–67 (1990) (Stoch. Algebra and Analysis in Classical and Quantum Dynamics, Marseille (1988))

    MathSciNet  Google Scholar 

  10. Davydov, Yu.A., Lifshits, M.A.: Stratification method in some probability problems. Prob. Theory, Math. Stat., Theor. Cybern. 22, 61–137 (1984) (in Russian)

    MathSciNet  Google Scholar 

  11. Davydov, Yu.A., Lifshits, M.A., Smorodina, N.V.: Local Properties of Distributions of Stochastic Functionals. Translations of Mathematical Monographs, vol. 173. Nauka, Moscow (1995) (in Russian). Engl. transl. in Translations of Mathematical Monographs, vol. 173. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  12. Denis, L.: A criterion of density for solutions of Poisson-driven SDE’s. Probab. Theory Relat. Fields 118, 406–426 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Elliott, R.J., Tsoi, A.H.: Integration-by-parts for Poisson processes. J. Multivar. Anal. 44, 179–190 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Federer, G.: Geometric Measure Theory. Nauka, Moscow (1987) (in Russian). Translated from Federer, G.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  15. Fournier, N.: Jumping S.D.E.s: absolute continuity using monotonicity. Stoch. Process. Appl. 98(2), 317–330 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fournier, N.: Smoothness of the law of some one-dimensional jumping S.D.E.s with non-constant rate of jump. Electron. J. Probab. 13(6), 135–156 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Ishikawa, Y.: Density estimate in small time for jump processes with singular Lévy measures. Tohoku Math. J. 53, 183–202 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ishikawa, Y., Kunita, H.: Existence of density for canonical differential equations with jumps. Stoch. Process. Appl. 116(12), 1743–1769 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kerstan, J., Mattes, K., Mecke, J.: Infinitely Divisible Point Processes. Akademie, Berlin (1978)

    MATH  Google Scholar 

  20. Komatsu, T., Takeuchi, A.: On the smoothness of PDF of solutions to SDE of jump type. Int. J. Differ. Equ. Appl. 2(2), 141–197 (2001)

    MATH  MathSciNet  Google Scholar 

  21. Kulik, A.M.: Admissible transformations and Malliavin calculus for compound Poisson process. Theory Stoch. Process. 5(21)(3–4), 120–126 (1999)

    MathSciNet  Google Scholar 

  22. Kulik, A.M.: Malliavin calculus for Lévy processes with arbitrary Lévy measures. Probab. Theor. Math. Stat. 72, 67–83 (2005)

    MATH  Google Scholar 

  23. Kulik, A.M.: On a regularity of distribution for solution of SDE of a jump type with arbitrary Lévy measure of the noise. Ukr. Math. J. 57(9), 1261–1283 (2005)

    MATH  MathSciNet  Google Scholar 

  24. Kulik, A.M.: On a convergence in variation for distributions of solutions of SDEs with jumps. Random Oper. Stoch. Equ. 13(3), 297–312 (2005)

    MATH  MathSciNet  Google Scholar 

  25. Kulik, A.M.: Stochastic calculus of variations for general Lévy processes and its applications to jump-type SDE’s with non degenerated drift. Preprint (2006). http://arxiv.orgPR/0606427

  26. Kulik, A.M.: Exponential ergodicity of the solutions to SDE’s with a jump noise. Stoch. Process. Appl. 119, 602–632 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Léandre, R.: Regularites de processus de sauts degeneres (II). Ann. Inst. H. Poincare Probab. Stat. 24, 209–236 (1988)

    MATH  Google Scholar 

  28. Matheron, G.: Random Sets and Integral Geometry. Mir, Moscow (1978) (in Russian). Translated from Matheron, G.: Random Sets and Integral Geometry. New York, Wiley (1975)

    Google Scholar 

  29. Nourdin, I., Simon, T.: On the absolute continuity of Lévy processes with drift. Ann. Probab. 34(3), 1035–1051 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Parthasarathy, K.: Introduction to Probability and Measure. Springer, New York (1978)

    Google Scholar 

  31. Picard, J.: On the existence of smooth densities for jump processes. Probab. Theory Rel. Fields 105, 481–511 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Protter, P.E.: Stochastic Integration and Differential Equations. Applications of Mathematics, Stochastic Modelling and Applied Probability, vol. 21. Springer, Berlin (2004)

    MATH  Google Scholar 

  33. Skorokhod, A.V.: Random Processes with Independent Increments. Nauka, Moscow (1967) (in Russian). Engl. Transl. Skorokhod, A.V.: Random Processes with Independent Increments, Kluwer (1991)

    Google Scholar 

  34. Yamazato, M.: Absolute continuity of transition probabilities of multidimensional processes with independent increments. Probab. Theor. Appl. 38(2), 422–429 (1994)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey M. Kulik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulik, A.M. Absolute Continuity and Convergence in Variation for Distributions of Functionals of Poisson Point Measure. J Theor Probab 24, 1–38 (2011). https://doi.org/10.1007/s10959-010-0325-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-010-0325-4

Keywords

Mathematics Subject Classification (2000)

Navigation