Skip to main content
Log in

Exact Asymptotics in log log Laws for Random Fields

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let \(\{ X,X_k ,k \in {\mathbb{N}}^r \}\) be i.i.d. random variables, and set S n =∑ k n X k . We exhibit a method able to provide exact loglog rates. The typical result is that

$${\mathop {\lim }\limits_{\varepsilon \searrow \sigma \sqrt {2r}} } \sqrt {\varepsilon ^2 - 2r\sigma ^2 } \sum\limits_n {\frac{1}{{|\,n\,|}}P(|S_n \geqslant \varepsilon \sqrt {|\,n\,|\log \log |\,n\,|} ) = \frac{{\sigma \sqrt {2r} }}{{r!}},}$$

whenever EX=0,EX 22 and E[X 2(log+ | X |)r-1] < ∞. To get this and other related precise asymptotics, we derive some general estimates concerning the Dirichlet divisor problem, of interest in their own right.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chen, R. (1978). A remark on the tail probability of a distribution. J.Multivariate Anal. 8, 328-333.

    Google Scholar 

  2. Chow, Y. S., and Lai, T. L. (1978). Paley-type inequalities and convergence rates related to the law of large numbers and extended renewal theory. Z.Wahrschein-lichkeitstheorie verw.Gebiete 45, 1-19.

    Google Scholar 

  3. Deng, D. (1995). Convergence rates for probabilities of moderate deviation for sums of random variables indexed by Zd+. Acta Math.Hung. 67, 131-149.

    Google Scholar 

  4. Erdős, P. (1949). On a theorem of Hsu and Robbins. Ann.Math.Stat. 20, 286-291.

    Google Scholar 

  5. Erdős, P. (1950). Remark on my paper “On a theorem of Hsu and Robbins ”. Ann.Math.Stat. 21, 138.

    Google Scholar 

  6. Gafurov, M. U. (1983). On the Estimate of the Rate of Convergence in the Law of the Iterated Logarithm, Lecture Notes in Math., Vol.1021, Springer-Verlag, New York, pp. 137-144.

    Google Scholar 

  7. Gafurov, M. U., and Sira ¢zdinov, S. H. (1979). Some generalizations of Erdős-Katz results related to strong laws of large numbers and their applications (in Russian). Kybernetica 15, 272-292.

    Google Scholar 

  8. Galambos, J., Indlekofer, K. H., and Kátai, I. (1987). A renewal theorem for random walks in multidimensional time. Trans.Amer.Math.Soc. 300, 759-769.

    Google Scholar 

  9. Gut, A. (1978). Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices. Ann.Probab. 6, 469-482.

    Google Scholar 

  10. Gut, A. (1980). Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices. Ann.Probab. 8, 298-313.

    Google Scholar 

  11. Gut, A., and Sp ¢ataru, A. (2000). Precise asymptotics in the Baum-Katz and Davis law of large numbers. J.Math.Anal.Appl. 248, 233-246.

    Google Scholar 

  12. Gut, A., and Sp ¢ataru, A. (2000). Precise asymptotics in the law of the iterated logarithm. Ann.Probab. 28, 1870-1883.

    Google Scholar 

  13. Gut, A., and Sp ¢ataru, A. (2003). Precise asymptotics in some strong limit theorems for multidimensionally indexed random variables. J.Multivariate Anal. 86, 398-422.

    Google Scholar 

  14. Hardy, G. H., and Wright, E. M. (1979). An Introduction to the Theory of Numbers, 5th ed., Oxford University Press.

  15. Heyde, C. C. (1975). A supplement to the strong law of large numbers. J.Appl.Probab. 12, 173-175.

    Google Scholar 

  16. Hsu, P. L., and Robbins, H. (1947). Complete convergence and the law of large numbers. Proc.Nat.Acad.Sci. 33, 25-31.

    Google Scholar 

  17. Hüsler, J. (1978). A remark on the strong law of large numbers for random variables on partially ordered sets. University of Bern, Unpublished manuscript.

  18. Kend ¢zaev, R. H. (1987). On the rate of convergence in the law of the iterated logarithm for independent random variables indexed by a sector (in Russian). Probability Models and Mathematical Statistics, Fan, Tashkent.

  19. Klesov, O. (1982). A remark to the strong law of large numbers (in Russian). Theor.Probab.Math. Stat. 26, 69-76.

    Google Scholar 

  20. Klesov, O. (1984). On the asymptotics of a series from probability (in Russian). Proc.Acad.Sci.Ukr. 8, 15-18.

    Google Scholar 

  21. Lagodowski, Z. A., and Rychlik, Z. (1984). Some remarks on the strong law of large numbers. Bull.Acad.Sci.Polon.,Ser.Math.Astronom.Phys. 32, 129-134.

    Google Scholar 

  22. Lagodowski, Z. A., and Rychlik, Z. (1986). Convergence rates in the strong law of large numbers for random elds. Probab.Math.Stat. 7, 149-158.

    Google Scholar 

  23. Li, D., Wang, X., and Rao, M. B. (1992). Some results on convergence rates for probabilities of moderate deviations for sums of random variables. Int.J.Math.Math.Sci. 15, 481-498.

    Google Scholar 

  24. Maejima, M., and Mori, T. (1984). Some renewal theorems for random walks in multidimensional time. Math.Proc.Camb.Philos.Soc. 95, 149-154.

    Google Scholar 

  25. Nagaev, A. V. (1975). A note on the law of large numbers in ℝd, d ⩾ 1. Summary of the 3rd USSR-Japan Symposium on Probability and Mathematical Statistics. Tashkent.

  26. Ney, P., and Wagner, S. (1972). The renewal theorem for a random walk in two-dimensional time. Studia Math. XLIV, 71-85.

    Google Scholar 

  27. Petrov, V. V. (1975). Sums of Independent Random Variables. Springer-Verlag, New York.

    Google Scholar 

  28. Pruss, A. R. (1997). A two-sided estimate in the Hsu-Robbins-Erdős law of large numbers. Stochastic Process.Appl. 70, 173-180.

    Google Scholar 

  29. Slivka, J., and Severe, N. C. (1970). On the strong law of large numbers. Proc.Amer.Math.Soc. 24, 729-734.

    Google Scholar 

  30. Smythe, R. (1973). Strong laws of large numbers for r-dimensional arrays of random variables. Ann.Probab. 1, 164-170.

    Google Scholar 

  31. Sp ¢ataru, A. (1999). Precise asymptotics in Spitzer 's law of large numbers. J.Theor.Probab. 12, 811-819.

    Google Scholar 

  32. Spitzer, F. (1956). A combinatorial lemma and its applications to probability theory. Trans.Amer.Math.Soc. 82, 323-339.

    Google Scholar 

  33. Titchmarsh, E. C. (1986). The Theory of the Riemann Zeta-function, 4th ed. Oxford University Press, Oxford.

    Google Scholar 

  34. Wu, C. F. (1973). A note on the convergence rate of the strong law of large numbers. Bull.Inst.Math.Acad.Sinica 1, 121-124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spătaru, A. Exact Asymptotics in log log Laws for Random Fields. Journal of Theoretical Probability 17, 943–965 (2004). https://doi.org/10.1007/s10959-004-0584-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-004-0584-z

Navigation