Skip to main content

Advertisement

Log in

Harnack’s Inequality for the p(x)-Laplacian with a Two-Phase Exponent p(x)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

One considers solutions of the p(x)-Laplacian equation in a neighborhood of a point x0 on a hyperplane Σ. It is assumed that the exponent p(x) possesses a logarithmic continuity modulus as x0 is approached from one of the half-spaces separated by Σ. A version of the Harnack inequality is proved for these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Zhikov, “Some questions of convergence, duality, and homogenization for functionals in the calculus of variations,” Izv. AN SSSR. Ser. Mat., 47, No. 5, 961–995 (1983).

    MATH  Google Scholar 

  2. V. V. Zhikov, “Homogenization of nonlinear functionals in the calculus of variations and the theory of elasticity,” Izv. AN SSSR. Ser. Mat., 50, No. 4, 675–711 (1986).

    Google Scholar 

  3. M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin (2000).

    Book  Google Scholar 

  4. V. V. Zhikov, “Myers estimates for solutions of the nonlinear Stokes system,” Differ. Uravn., 33, No. 1, 107–114 (1997).

    MathSciNet  Google Scholar 

  5. V. V. Zhikov, “Solvability of a three-dimensional thermistor problem,” Tr. MIAN, 261, 101–114 (2008).

    MathSciNet  MATH  Google Scholar 

  6. L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lect. Notes Math., Vol. 2017, Springer, Berlin (2011).

  7. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser, Springer, Basel (2013).

    Book  Google Scholar 

  8. V. Kokilashvili, A. Meshkii, H. Rafeiro, and S. Samko, Integral Operators in Non-Standard Function Spaces, Vol. 1 : Variable Exponent Lebesgue and Amalgam Spaces, Vol. 2 : Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, Operator Theory: Adv. Appl., Vols. 248 and 249, Birkhäuser, Springer, Basel (2016).

  9. V. Zhikov, “On variational problems and nonlinear elliptic equations with nonstandard growth conditions,” J. Math. Sci., 173, No. 5, 463–570 (2011).

    Article  MathSciNet  Google Scholar 

  10. V. V. Zhikov, Variational Problems and Nonlinear Elliptic Equations with Nonstandard Growth Conditions, J. Math. Sci., 175, 463–570 (2011).

    Article  MathSciNet  Google Scholar 

  11. V. V. Zhikov, “On Lavrentiev’s phenomenon,” Russ. J. Math. Phys., 3, No. 2, 249–269 (1995).

    MathSciNet  MATH  Google Scholar 

  12. V. V. Zhikov, “On setting boundary-value problems for integrands of the form |ξ| α(x),” Usp. Mat. Nauk, 41, No. 4, 187–188 (1986).

    Google Scholar 

  13. Yu. A. Alkhutov, “Harnack’s inequality and Hölder continuity of solutions of nonlinear elliptic equations with nonstandard growth conditions,” Differ. Uravn., 33, No. 12, 1651–1660 (1997).

    MathSciNet  Google Scholar 

  14. Yu. A. Alkhutov and O. A. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with nonstandard growth conditions,” Izv. RAN. Ser. Mat., 68, No. 6, 3–60 (2004).

    Article  MathSciNet  Google Scholar 

  15. O. A. Krasheninnikova, “Pointwise continuity of solutions of elliptic equations with nonstandard growth conditions,” Tr. MIAN, 236, 204–211 (2002).

    MathSciNet  Google Scholar 

  16. Yu. A. Alkhutov and O. A. Krasheninnikova, “Continuity of solutions of elliptic equations with variable nonlinearity exponent,” Tr. MIAN, 261, 7–15 (2008).

    MATH  Google Scholar 

  17. V. V. Zhikov, “On density of smooth functions in Sobolev–Orlicz ,” Zap. Nauchn. Sem. POMI, 310, 67–81 (2004).

    MATH  Google Scholar 

  18. V. V. Zhikov and S. E. Pastukhova, “Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent,” Mat. Sb., 199, No. 2, 19–52 (2008).

    Article  MathSciNet  Google Scholar 

  19. E. Acerbi and N. Fusco, “A transmission problem in the calculus of variations,” Calc. Var. Partial Differ. Equ., 2, No. 1, 1–16 (1994).

    Article  MathSciNet  Google Scholar 

  20. Yu. A. Alkhutov, “Hölder continuity of p(x)-harmonic functions,” Mat. Sb., 196, No. 2, 3–28 (2005).

    Article  MathSciNet  Google Scholar 

  21. J. Serrin, “Local behavior of solutions of quasilinear elliptic equations,” Acta Math., 111, 247–302 (1964).

    Article  MathSciNet  Google Scholar 

  22. N. S. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations,” Commun. Pure Appl. Math., 20, 721–747 (1967).

    Article  MathSciNet  Google Scholar 

  23. Yu. A. Alkhutov and M. D. Surnachev, “Harnack’s inequality for the elliptic (p, q)-Laplacian,” Dokl. RAN, 470, No. 6, 623–627 (2016).

    MathSciNet  MATH  Google Scholar 

  24. Yu. A. Alkhutov and M. D. Surnachev, “A Harnack inequality for a transmission problem with p(x)-Laplacian,” Appl. Anal., 98, No. 1-2, 332–344 (2019).

    Article  MathSciNet  Google Scholar 

  25. J. Moser, “On Harnack’s theorem for elliptic differential equations,” Commun. Pure Appl. Math., 14, 577–591 (1961).

    Article  MathSciNet  Google Scholar 

  26. N. S. Trudinger, “On the regularity of generalized solutions of linear, non-unformly elliptic equations,” Arch. Ration. Mech. Anal., 42, 50–62 (1971).

    Article  Google Scholar 

  27. Yu. A. Alkhutov and M. D. Surnachev, “Regularity of a boundary point for the p(x)-Laplacian,” J. Math. Sci., 232, No. 3, 206–231 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Alkhutov.

Additional information

Dedicated to the memory of Vasilii Vasilievich Zhikov

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 32, pp. 8–56, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhutov, Y.A., Surnachev, M.D. Harnack’s Inequality for the p(x)-Laplacian with a Two-Phase Exponent p(x). J Math Sci 244, 116–147 (2020). https://doi.org/10.1007/s10958-019-04609-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04609-y

Navigation