Skip to main content
Log in

Stieltjes Integrals in the Theory of Harmonic Functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study various Stieltjes integrals (Poisson–Stieltjes, conjugate Poisson–Stieltjes, Schwartz– Stieltjes, and Cauchy–Stieltjes integrals) and prove theorems on the existence of their finite angular limits a.e. in terms of the Hilbert–Stieltjes integral. These results are valid for arbitrary bounded integrands that are differentiable a.e. and, in particular, for integrands from the class CBV (countably bounded variation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Bari, A Treatise on Trigonometric Series, Vols. I–II, Macmillan, New York (1964).

    Google Scholar 

  2. A. A. Borovkov, Probability Theory, Gordon and Breach, Amsterdam (1998).

    MATH  Google Scholar 

  3. O. Dovgoshey, O. Martio, V. Ryazanov, and M. Vuorinen, “The Cantor function,” Expo. Math., 24, 1–37 (2006).

    Article  MathSciNet  Google Scholar 

  4. P. L. Duren, Theory of HpSpaces, Academic Press, New York–London (1970).

    Google Scholar 

  5. E. M. Dyn’kin, “Methods of the theory of singular integrals (Hilbert transform and Calderón–Zygmund theory)”, in: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya [in Russian], 15, Moscow (1987), pp. 197–292.

  6. J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge Univ. Press, Cambridge (2005).

    Book  Google Scholar 

  7. F. W. Gehring, “On the Dirichlet problem,” Michigan Math. J., 3, 201 (1955—1956).

  8. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc. (1969).

  9. V. P. Havin, “Boundary properties of integrals of Cauchy type and of conjugate harmonic functions in regions with rectifiable boundary,” Mat. Sb. (N.S.), 68 (110) (1965), 499–517.

  10. P. L. Hennequin and A. Tortrat, Théorie des probabilités et quelques applications, Masson et Cie, Paris (1965).

    MATH  Google Scholar 

  11. S. V. Kislyakov, “Classical problems of Fourier analysis,” in: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya [in Russian], 15, Moscow (1987), pp. 135–195.

  12. P. Koosis, Introduction to HpSpaces, 2nd edition, Cambridge Univ. Press, Cambridge (1998).

  13. N. N. Luzin, “On the main theorem of integral calculus,” Mat. Sb., 28, 266–294 (1912).

    Google Scholar 

  14. N. N. Luzin, “Integral and trigonometric series,” Dissertation, Moscow (1915).

  15. N. N. Luzin, Integral and Trigonometric Series [in Russian], editing and commentary by N. K. Bari and D. E. Menshov, Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow–Leningrad (1951).

  16. N. Luzin, “Sur la notion de l’intégrale,” Ann. Mat. Pura Appl., 26, No. 3, 77–129 (1917).

    Article  Google Scholar 

  17. D. Menchoff, “Sur la représentation des fonctions mesurables par des séries trigonométriques,” Rec. Math. [Mat. Sbornik] N.S., 9 (51), 667–692 (1941).

  18. R. Nevanlinna, Eindeutige analytische Funktionen, Springer, Ann Arbor (1936).

    Book  Google Scholar 

  19. W. F. Pfeffer, “Integration by parts for the generalized Riemann–Stieltjes integral,” J. Austral. Math. Soc. Ser. A, 34, No. 2, 229–233 (1983).

    Article  MathSciNet  Google Scholar 

  20. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer–Verlag, Berlin, (1992).

  21. I. Privaloff, “Sur l’intégrale du type de Cauchy–Stieltjes,” Izv. Akad. Nauk SSSR, Ser. Math., 4, 261–276 (1940).

    MathSciNet  MATH  Google Scholar 

  22. I. I. Priwalow, Introduction to the Theory of Functions of One Complex Variable [in Russian], 12th edition, Nauka, Moscow (1977).

    Google Scholar 

  23. I. I. Priwalow, Randeigenschaften analytischer Funktionen, Deutscher Verlag der Wissenschaften, Berlin (1956).

    Google Scholar 

  24. M. Riesz, “Sur les fonctions conjuguées,” Math. Z., 27, 218–244 (1927).

    Article  Google Scholar 

  25. V. Ryazanov, “On the Riemann–Hilbert problem without index,” Ann. Univ. Bucharest, Ser. Math., 5 (LXIII), No. 1, 169–178 (2014).

  26. V. Ryazanov, “Infinite dimension of solutions of the Dirichlet problem,” Open Math., 13, No. 1, 348–350 (2015).

    Article  MathSciNet  Google Scholar 

  27. V. Ryazanov, “On the boundary behavior of conjugate harmonic functions,” Proc. Inst. Appl. Math. Mech. Nat. Acad. Sci. Ukraine, 31, 117–123 (2017).

    Google Scholar 

  28. V. Ryazanov, “Correlation of boundary behavior of conjugate harmonic functions,” arXiv.org:1710.00323v3[math.CV].

  29. V. Ryazanov and A. Yefimushkin, “On the Riemann–Hilbert problem for the Beltrami equations,” Contemp. Math., 667, 299–316 (2016).

    Article  MathSciNet  Google Scholar 

  30. S. Saks, Theory of the Integral, Warsaw (1937); Dover Publications, New York (1964).

    Google Scholar 

  31. V. Smirnoff, “Sur les valeurs limites des fonctions, régulières àl’interieur d’un cercle,” J. Soc. Phys.-Math. Léningrade, 2, No. 2, 22–37 (1929).

    MathSciNet  MATH  Google Scholar 

  32. A. Yefimushkin, “On Neumann and Poincaré problems in A-harmonic analysis,” Adv. Anal., 1, No. 2, 114–120 (2016).

    MathSciNet  Google Scholar 

  33. A. Zygmund, Trigonometric Series, Wilno (1935).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ryazanov.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 467, 2018, pp. 151–168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryazanov, V.I. Stieltjes Integrals in the Theory of Harmonic Functions. J Math Sci 243, 922–933 (2019). https://doi.org/10.1007/s10958-019-04593-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04593-3

Navigation