Skip to main content
Log in

Integral Equations and the Scattering Diagram in the Problem of Diffraction by Two Shifted Contacting Wedges with Polygonal Boundary

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The acoustic problem of diffraction by two wedges with different wave velocities is studied. It is assumed that the wedges with parallel edges have a common part of the boundary and the second wedge is shifted with respect of the first one in the orthogonal to the edges direction along the common part of the boundary. The wave field is governed by the Helmholtz equations. On the polygonal boundary, separating these shifted wedges from the exterior, the Dirichlet boundary condition is satisfied. The wave field is excited by an infinite filamentary source, which is parallel to the edges. In these conditions, the problem is effectively two-dimensional. The Kontorovich–Lebedev transform is applied to separate the radial and angular variables and to reduce the problem at hand to integral equations of the second kind for so-called spectral functions. The kernel of the integral equations given in the form of an integral of the product of Macdonald functions is analytically transformed to a simplified expression. For the problem at hand, some reductions of the equations are also discussed for the limiting or degenerate values of parameters. Making use of an alternative integral representation of the Sommerfeld type, expressions for the scattering diagram are then given in terms of spectral functions. Bibliography: 24 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Gautesen, “Scattering of a Rayleigh wave by an elastic quarter space-revisited,” Wave Motion, 35, 91–98 (2002a).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. K. Gautesen, “Scattering of a Rayleigh wave by an elastic quarter space-revisited,” Wave Motion, 35, 417–424 (2002b).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Fujii, “Rayleigh-wave scattering of various wedge corners: Investigation in the wider range of wedge angles,” Bull. Seismol. Soc. Am., 84, 1916–1924 (1994).

    Google Scholar 

  4. J.-P. Croisille and G. Lebeau, “Diffraction by an immersed elastic wedge,” Lect. Notes Math., 1723, Springer-Verlag, Berlin (1999).

  5. V. V. Kamotski and G. Lebeau, “Diffraction by an elastic wedge with stress free boundary: Existence and uniqueness,” Proc. Roy. Soc. A, 462 (2065), 289–317 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. D. Rawlins, “Diffraction by, or diffusion into, a penetrable wedge,” Proc. R. Soc. A, 455, 2655–2686 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. A. Salem, A. H. Kamel, and A. V. Osipov, “Electromagnetic fields in the presence of an infinite dielectric wedge,” Proc. Roy. Soc. A, 462 (2072), 2503–2522 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. S. Jones, “Rawlin’s method and the diaphanous cone,” Quaterly J. Mech. Appl. Math., 53, No. 1, 91–109 (2000).

    Article  MATH  Google Scholar 

  9. M. A. Lyalinov, “Acoustic scattering of a plane wave by a circular penetrable cone,” Wave Motion, 48, 1, 62–82 (doi:10.1016/j. wavemoti. 2010.07.002) (2011).

  10. J.-M. L. Bernard, “Méthode analytique et transformées fonctionnelles pour la diffraction d’ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d’impédance constante,” rapport CEA-R-5764, Editions Dist-Saclay (1997).

  11. M. A. Lyalinov and N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, SciTech-IET Edison, NJ (2012).

    Google Scholar 

  12. 12. J.-M. L. Bernard and M. A. Lyalinov, “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section ”, Wave Motion, 33, 155–181 (2001). (Erratum : p.177 replace O(1/cos(π(v − b))) by O(v d sin(πv)/cos(π(v − b))).

  13. J.-M. L. Bernard and M. A. Lyalinov, “Electromagnetic scattering by a smooth convex impedance cone,” IMA J. Appl. Math., 69(3), 285–333, June (2004). (Multiply sin(ζ) by n/|n| in (D.20) of Appendix D.)

  14. B. V. Budaev, “Diffraction by wedges,” Pitman Research Notes Math., 322, Longman Scientific and Technical, Essex (1995).

  15. V. M. Babich, M. A. Lyalinov, and V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science, Oxford (2008).

  16. Y. A. Kravtsov and N. Y. Zhu, Theory of Diffraction. Heuristic Approach, Alpha Science, Oxford (2010).

    Google Scholar 

  17. J.-M. L. Bernard, “A spectral approach for scattering by impedance polygons,” Q. Jl. Mech. Appl. Math., 59(4), 517–550 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. S. Fokas, “Two Dimensional Linear PDEs in a Convex Polygon,” Proc. R. Soc. Lond. A, 457, 371–393 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  19. B. V. Budaev and D. B. Bogy, “Diffraction by a convex polygon with side-wise constant impedance,” Wave Motion, 43 (8), 631–645 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. S. Jones, “The Kontorovich-Lebedev transform,” J. Inst. Maths Applics, 26, 133–141 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. D. Avdeev and S. M. Grudsky, “On modified Kontorovich-Lebedev transform and its application to the problem of cylindrical wave diffraction on perfectly conducting wedge,” Radiotekhnika Elektronika, 39(7), 1081–1089 (1994).

    Google Scholar 

  22. I. S. Gradstein and I. M. Ryzhik, Tables of Integrals, Series and Products, 4th ed., Academic Press, Orlando (1980).

    Google Scholar 

  23. L. S. Rakovschik, “Systems of integral equations with almost difference operators,” Sibirian Math. J., 3, No. 2, 250–255 (1962).

    MathSciNet  Google Scholar 

  24. V. M. Babich, D. B. Dement’ev, B. A. Samokish, and V. P. Smyshlyaev, “On evaluation of the diffraction coefficients for arbitrary ‘nonsingular’ directions of a smooth convex cone,” SIAM J. Appl. Math., 60(2), 536–573 (2000).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Lyalinov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 426, 2014, pp. 119–139.

Translated by M. A. Lyalinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyalinov, M.A. Integral Equations and the Scattering Diagram in the Problem of Diffraction by Two Shifted Contacting Wedges with Polygonal Boundary. J Math Sci 214, 322–336 (2016). https://doi.org/10.1007/s10958-016-2780-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2780-7

Keywords

Navigation