Skip to main content
Log in

The Griffith formula and Cherepanov–Rice integral for a plate with a rigid inclusion and a crack

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the model problem for a plate described by a biharmonic equation. The plate contains a rigid inclusion separated from the elastic part by a crack. We show that the target energy functional is differentiable with respect to a small perturbation of the crack length and the derivative can be represented as an invariant integral — a contour integral along a contour surrounding a crack vertex. The formula for the derivative and the invariant integral are analogues of the Griffith formula and Cherepanov–Rice integral known in the brittle fracture theory. Bibliography: 34 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Z. Parton and E. M. Morozov, Mechanics of Elastic–Plastic Fracture [in Russian], Nauka, Moscow (1974); English transl.: Hemisphere Publ. Corp., Washington, DC (1989).

    MATH  Google Scholar 

  2. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974); English transl.: McGraw-Hill, New York etc. (1979).

    MATH  Google Scholar 

  3. K. Ohtsuka, “Mathematics of brittle fracture,” In: Theoretical Studies on Fracture Mechanics in Japan, Hiroshima-Denki Inst. Technol., Hiroshima, pp. 99–172 (1997).

    Google Scholar 

  4. S. A. Nazarov and M. Specovius-Neugebauer, “Use of the energy criterion of fracture to determine the shape of a slightly curved crack” [in Russian], Prikl. Mekh. Tekh. Fiz. 47, No. 5, 119–130 (2006); English transl.: J. Appl. Mech. Tech. Phys. 47, No. 5, 714–723 (2006).

    Article  MathSciNet  Google Scholar 

  5. B. Cotterell and J. R. Rice, “Slightly curved or kinked cracks,” Int. J. Fract. 16, No. 2, 155–169 (1980).

    Article  Google Scholar 

  6. M. Amestoy and J. B. Leblond, “Crack paths in plane situations. II: Detailed form of the expansion of the stress intensity factors,” Int. J. Solids Struct. 29, No. 4, 465–501 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. B. Leblond, “Crack paths in three-dimensional elastic solids. I: Two-term expansion of the stress intensity factors — application to cracks path stability in hydraulic fracturing,” Int. J. Solids Struct. 36, No. 1, 79–103 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Leguillon, “Asymptotic and numerical analysis of a crack branching in non isotropic materials,” Eur. J. Mech., A 12, No. 1, 33–51 (1993).

    MathSciNet  MATH  Google Scholar 

  9. H. Gao and Ch. Chiu, “Slightly curved or kinked cracks in anisotropic elastic solids,” Int. J. Solids Struct. 29, No. 8, 947–972 (1992).

    Article  MATH  Google Scholar 

  10. P. A. Martin, “Perturbed cracks in two-dimensions: an integral-equation approach,” Int. J. Fract. 104, No. 3, 317–327 (2000).

    Article  Google Scholar 

  11. E. M. Rudoy, “Differentiation of the energy functional in the problem about curvilinear crack with possible contact of faces” [in Russian], Izv. RAS, Mechanics of Solids No. 6, 113–127 (2007).

  12. A. M. Khludnev, K. Ohtsuka, and J. Sokolowski, “On derivative of energy functional for elastic bodies with cracks and unilateral conditions,” Q. Appl. Math. 60, No. 1, 99–109 (2002).

    MathSciNet  MATH  Google Scholar 

  13. V. A. Kovtunenko, ‘Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration,” IMA J. Appl. Math. 71, No. 5, 635–657 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. M. Rudoy, “Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks” [in Russian], Sib. J. Ind. Mat. 8, No. 1, 106–116 (2005); English transl.: J. Appl. Indust. Math. 1, No. 1, 95–104 (2007).

    Article  Google Scholar 

  15. E. M. Rudoy, “Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut” [in Russian], Sib. Mat. Zh. 50, No. 2, 429–444 (2009); English transl.: Sib. Math. J. 50, No. 2, 341–354 (2009).

    Article  MathSciNet  Google Scholar 

  16. A. Friedman, B. Hu, and J. Velazquez, “The evolution of stress intensity factors and the propagation of cracks in elastic media,” Arch. Ration. Mech. Anal. 152, No. 2, 103–139 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Friedman, B. Hu, and J. J. L. Velazquez, “Asymptotics for the biharmonic equation near the tip of a crack,” Indiana Univ. Math. J. 47, No. 4, 1327–1395 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  18. E. M. Rudoy, “Invariant integrals for the equilibrium problem for a plate with a crack” [in Russian], Sib. Mat. Zh. 45, No. 2, 466–477 (2004); English transl.: Sib. Math. J. 45, No. 2, 388–397 (2004).

    Article  Google Scholar 

  19. E. M. Rudoy, “Asymptotics of the energy integral under perturbation of the boundary” [in Russian], Din. Splosh. Sred 116, 97–103 (2000).

    Google Scholar 

  20. M. Toya, “A crack along the interface of a rigid circular inclusion embedded in an elastic solid,” Int. J. Fract. 9, No. 4, 463–470 (1973).

    Google Scholar 

  21. M. Maiti, “On the extension of a crack due to rigid inclusions,” Int. J. Fract. 15, No. 4, 389–393 (1979).

    Google Scholar 

  22. V. I. Mossakovskij and M. R. Rybka, “Generalization of the Griffith-Sneddon criterion for the case of a nonhomogeneous body” [in Russian], Prikl. Mat. Mekh. 28, 1061–1069 (1964); English transl.: J. Appl. Math. Mech. 28, 1277–1286 (1964).

    Article  MATH  Google Scholar 

  23. Z. M. Xiao and B. J. Chen, “Stress intensity factor for a Griffith crack interacting with a coated inclusion,” Int. J. Fract. 108, No. 3, 193–205 (2001).

    Article  MathSciNet  Google Scholar 

  24. F. Erdogan, G. D. Gupta, and M. Ratwani, “Interaction between a circular inclusion and an arbitrarily oriented crack,” J. Appl. Mech. 41, 1007–1013 (1974).

    Article  MATH  Google Scholar 

  25. G. P. Sendeckyj, “Interaction of cracks with rigid inclusions in longitudinal shear deformation,” Int. J. Fract. 10, No. 1, 45–52 (1974).

    Article  Google Scholar 

  26. H. Nisitani, D. H. Chen, and A. Saimoto, “Interaction between an elliptic inclusion and a crack,” In: Proc. Intern. Conf. Computer-Aided Assessment and Control, Computational Mechanics Inc, MA, USA, Vol. 4, 325–332 (1996).

  27. A. M. Khludnev, The Problem about a Crack on the Interface between a Rigid Inclusion and an Elastic Plate, [in Russian], Preprint, Lavrent’ev Institute of Hydrodynamics SB RAS, Novosibirsk, No. 1–09 (2009).

  28. V. Z. Parton and P. I. Perlin, Methods of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  29. G. Fichera, The Existence Theorems in the Theory of Elasticity [Russian translation], Nauka, Moscow (1974).

    Google Scholar 

  30. F. E. Browder, “On the regularity properties of solutions of elliptic differential equations,” Commun. Pure Appl. Math. 9 351–361 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. I. Koshelev, “A priori estimates in L p and generalized solutions to ellptic equations and systems” [in Russian], Usp. Mat. Nauk 13, No. 4, 29–88 (1958).

    Google Scholar 

  32. A. M. Khludnev and J. Sokolowski, “The Griffith formula and the Rice-Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains,” Eur. J. Appl. Math. 10, No. 4, 379–394 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. M. Khludnev, “Crack theory with possible contact of faces” [in Russian], Usp. Mech. 3, No. 4, 41–82 (2005).

    Google Scholar 

  34. L. T. Berezhnitskii, V. V. Panasyuk, and N. G. Staschuk, Interaction of Rigid Linear Inclusions and Cracks in a Deformed Body [in Russian], Nauk. Dumka, Kiev (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Rudoy.

Additional information

Translated from Vestnik Novosibirskogo Gosudarstvennogo Universiteta: Seriya Matematika, Mekhanika, Informatika 10, No. 2, 2010, pp. 98-117.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudoy, E.M. The Griffith formula and Cherepanov–Rice integral for a plate with a rigid inclusion and a crack. J Math Sci 186, 511–529 (2012). https://doi.org/10.1007/s10958-012-1004-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-1004-z

Keywords

Navigation