Skip to main content
Log in

Exact solutions of the m-dimensional wave equation from paraxial ones. Further generalizations of the Bateman solution

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A review of earlier generalizations of the classical Bateman solution, which involves an arbitrary function, is given. Further generalizations of it, getting the phase parametrized by m(m – 1) free real parameters, are built. Under a proper choice of the arbitrary function, such a solution may describe a Gaussian beam or a Gaussian packet. The approach is based upon a certain connection between solutions of a Srödinger-type equation and the wave equation. Bibliography: 37 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell’s Equations, Cambridge Univ. Press, Cambridge (1915).

    Google Scholar 

  2. V. A. Fock, Electromagnetic Diffraction and Propagation Problems, Pergamon Press, Oxford (1965).

    Google Scholar 

  3. L. A. Weinstein, Open Resonators and Open Waveguides, Boulder, Golem (1969).

    Google Scholar 

  4. J. A. Arnaud and H. Kogelnik. “Gaussian light beams with general astigmatism. Appl. Optics, 8(8), 1687–1693 (1969).

    Article  Google Scholar 

  5. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short- Wavelength Diffraction Theory, 2nd ed., Alpha Science International, Oxford, UK (2009)

    Google Scholar 

  6. J. N. Brittingham, “Focus waves modes in homogeneous Maxwell’s equations: Transverse electric mocle,” J. Appl. Phys., 54(3), 1179–1185 (1983).

    Article  Google Scholar 

  7. A. P. Kiselev, “Modulated Gaussian beams,” Radiophys. Quantum Electron., 26(5), 755–761 (1983).

    Article  MathSciNet  Google Scholar 

  8. P. A. Bélanger, “Packetlike solutions of the homogeneous-wave equation,” J. Opt. Soc. Am. A, 1(7), 723–724 (1984).

    Article  Google Scholar 

  9. R. W. Ziolkowski, “Exact solutions of the wave equation with complex source locations,” J. Math. Phys., 26(4), 861–863 (1985).

    Article  MathSciNet  Google Scholar 

  10. I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, “A bidirectional traveling plane wave representation of exact solutions of the scalar wave equation,” J. Math. Phys., 30(6), 1254–1269 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. W. Ziolkowski, “Localized transmission of electromagnetic energy,” Phys. Rev. A, 39(4), 2005–2033 (1989).

    Article  MathSciNet  Google Scholar 

  12. A. P. Kiselev and M. V. Perel. “Highly localized solutions of the wave equation,” J. Math. Phys., 41(4), 1934–1955 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. P. Kiselev and M. V. Perel, “Relatively distortion-free waves for the m-dimensional wave equation,” Diff Eqs., 38(8), 1206–1207 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. I. M. Besieris, A. M. Shaarawi, and A. M. Attiya. “Bateman conformal transformations within the framework of the bidirectional spectral representation,” Progress Electromagnetics Research., 48, 201–231 (2004).

    Article  Google Scholar 

  15. A. P. Kiselev, “Localized light waves: paraxial and exact solutions of the wave equation (a review),” Optics Spectroscopy, 102(4), 603–622 (2007).

    Article  MathSciNet  Google Scholar 

  16. V. M. Babich, “Eigenfunctions concentrated in a neighborhood of a closed geodesic,” Zap. Nauehn. Semin. LOMI 9. 7–26 (1970).

    Google Scholar 

  17. M. M. Popov, “Resonators for lasers with developed directions of principal curvatures. Parabolie equation methods,” Optics Spectroscopy, 25(2), 314–316 (1968).

    Google Scholar 

  18. M. M. Popov, “Natural oscillations of multimirror resonators,” Vestn. Leningr. Univ., Ser. Fiz. Khim., 22(4), 42–54 (1969).

    Google Scholar 

  19. E. G. Abramochkin and V. G. Volostnikov, “Generalized Hermite–Laguerre–Gauss beams,” Phys. Wave Phenomena, 18(1), 14–22 (2010).

    Article  Google Scholar 

  20. C. F. R. Caron and R. M. Potvliege, “Bessel-modulated Gaussian beams with quadratic radial dependence,” Opt. Commun., 164, 83–93 (1999).

    Article  Google Scholar 

  21. V. P. Bykov and O. O. Silichev. Laser Resonators [in Russian]. Fizmatgiz, Moscow (2004).

    Google Scholar 

  22. A. P. Kiselev, A. B. Plachenov, and P. Chamorro-Posada, “General astigmatic nonparaxial wave beams and packets,” in: Proceedings of the 11th International Conference on Laser and Fiber-Optical Networks Modeling, Kharkov (2011), pp. 1–3.

  23. R. Courant and D. Hilbert, Methods of Mathematical Physics [Russian translation], Vol. 2. Interscience, New York (1962).

    Google Scholar 

  24. V. Smirnoff and S. Soboleff, “Sur le problème plan de vibrations élastiques,” Comptes Rendus, 194, 1437–1439 (1932).

    Google Scholar 

  25. S. L. Sobolev, Some Questions of the Theory of Propagation of Vibrations, F. Frank and R. Mises (eds.) Differential and Integral Equations of Mathematical Physics [in Russian] ONTI, Moscow (1937).

  26. V. I. Smirnov, A Course in Higher Mathematics, Vol. 3, Pt. 2, Pergamon, Oxford (1964).

  27. A. P. Kiselev, “Relatively undistorted cylindrieal waves dependent on three spatial variables,” Mat. Zametki, 79(4), 587–588 (2006).

    MathSciNet  MATH  Google Scholar 

  28. H. Bateman, “The conformal transformations of four dimensions and their applications to geometrical optics,” Proc. London Math. Soc., 7, 70–89 (1909).

    Article  MathSciNet  Google Scholar 

  29. P. Hillion, “Generalized phases and nondispersive waves,” Acta Appl. Math., 30(1), 35–45 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  30. E. A. Poljanskii, “The connection between the solutions of the Helmholtz equation and those of Schödinger type equations,” Zh. Vych. Mat., Mat. Fiz., 12(1), 318–329 (1972).

    Google Scholar 

  31. A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beains,” J. Opt. Soc. Amer. A, 9(5), 765–774 (1992).

    Article  MathSciNet  Google Scholar 

  32. A. Torre, “Separable-variable solutions of the wave equation from a general type of solutions of paraxial wave equation,” in: Proceedings of the International ConferenceDays on Diffraction 2009”, St. Petersburg, (2009), pp. 178–184.

  33. F. Gori, C. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun., 64(6), 491–495 (1987).

    Article  Google Scholar 

  34. P. L. Overfelt, “Bessel–Gauss pulses,” Phys. Rev. A, 44(6), 3941–3947 (1991).

    Article  MathSciNet  Google Scholar 

  35. M. V. Perel and I. V. Fialkovsky, “Exponentially localized solutions of the Klein–Gordon equation,” J. Math. Sci., 117(2), 3994–4000 (2003).

    Article  MathSciNet  Google Scholar 

  36. F. G. Friedlander, “Simple progressive solutions of the wave equation,” Proc. Cambridge Philos. Soc., 43, 360–373 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. B. Plaehenov, “Tilted nonparaxial beams and packets for the wave equation with two spatial variables,” Zap. Nauchn. Semin. POMI, 393, 224–233 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kiselev.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 393, 2011, pp. 167–177.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, A.P., Plachenov, A.B. Exact solutions of the m-dimensional wave equation from paraxial ones. Further generalizations of the Bateman solution. J Math Sci 185, 605–610 (2012). https://doi.org/10.1007/s10958-012-0944-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0944-7

Keywords

Navigation