Skip to main content
Log in

Bargmann type estimates of the counting function for general Schrödinger operators

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The paper concerns upper and lower estimates for the number of negative eigenvalues of one- and two-dimensional Schrödinger operators and more general operators with the spectral dimensions d ⩽ 2. The classical Cwikel–Lieb–Rosenblum (CLR) upper estimates require the corresponding Markov process to be transient, and therefore the dimension to be greater than two. We obtain CLR estimates in low dimensions by transforming the underlying recurrent process into a transient one using partial annihilation. As a result, the estimates for the number of negative eigenvalues are not translation invariant and contain Bargmann type terms. The general theorems are illustrated by analysis of several classes of the Schrödinger type operators (on the Riemannian manifolds, lattices, fractals, etc.). We provide estimates from below which prove that the results obtained are sharp. Lieb–Thirring estimates for the low-dimensional Schrödinger operators are also studied. Bibliography: 32 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cwikel, “Weak type estimates for singular values and the number of bound states of Schrödinger operators,” Ann. Math. (2) 106, 93-100 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Lieb, “Bounds on the eigenvalues of the Laplace and Schröedinger operators,” Bull. Amer. Math. Soc. 82, No. 5, 751–753 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Lieb, “The number of bound states of one-body Schrödinger operators and the Weyl problem. Geometry of the Laplace operator,” In: Proc. Sympos. Pure Math., Univ. Hawaii, pp. 241–252, Honolulu, Hawaii (1979).

  4. E. Lieb and W. Thirring, “Bound for the kinetic energy of fermions which proves the stability of matter,” Phys. Rev. Lett. 35, 687-689 (1975).

    Article  Google Scholar 

  5. E. Lieb and W. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities,” In: Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, E. Lieb, B. Simon, and A. Wightman, eds., pp. 269–303, Princeton University Press, Princeton (1976).

    Google Scholar 

  6. G. Rozenblum, “Distribution of the discrete spectrum of singular differential operators” [in Russian], Dokl. Acad. Nauk SSSR 202, 1012-1015 (1972); English transl.: Soviet Math. Dokl. 13, 245-249 (1972).

    Google Scholar 

  7. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, New York (1978).

    Google Scholar 

  8. G. Rozenblum and M. Solomyak, “CLR-estimate for the Generators of positivity preserving and positively dominated semigroups” [in Russian], Algebra Anal. 9, No. 6, 214–236 (1997); English transl.: St. Petersb. Math. J. 9, No. 6, 1195–1211 (1998).

    Google Scholar 

  9. G. Rozenblum, M. Solomyak, “Counting Schrödinger boundstates: semiclassics and beyond,” Sobolev Spaces in Mathematics. II. Applications in Analysis and Partial Differential Equations. Internat. Math. Series, 8, pp. 329–354, Springer and T. Rozhkovskaya Publishers, New York (2008).

    Google Scholar 

  10. S. Molchanov and B. Vainberg, “On general Cwikel–Lieb–Rozenblum and Lieb-Thirring inequalities,” In: Around the Research of Vladimir Maz’ya. III, Internat. Math. Series, 13, pp. 201–246, 329–354, Springer and T. Rozhkovskaya Publishers, New York (2010).

  11. E. B. Dynkin, Theory of Markov Processes, Dover Publ. Inc., Mineola, New York (2006).

    MATH  Google Scholar 

  12. B. Simon, “The bound states of weakly coupled Schrödinger operators in one and two dimensions,” Ann. Phys. 97, 279–288 (1976).

    Article  MATH  Google Scholar 

  13. A. Grigoryan, “Heat kernels on weighted manifolds and applications,;; Contemp. Math. 398, 93–191 (2006).

    Article  MathSciNet  Google Scholar 

  14. A. Grigoryan and L. Saloff-Coste, “Stability results for Harnack inequalities,” Ann. Inst. Fourier 55, No. 3, 825–890 (2005).

    Article  MathSciNet  Google Scholar 

  15. P. Li and S.-T. Yau, “On the parabolic kernel of the Schröedinger operator,” Acta Math. 156, No. 3-4, 153-201 (1986).

    Article  MathSciNet  Google Scholar 

  16. A. Grigoryan, Yu. Netrusov, and S.-T. Yau, “Eigenvalues of elliptic operators and geometric applications,” Surveys Diff. Geom. 9, 147–218 (2004).

    MathSciNet  Google Scholar 

  17. M. Solomyak, “Piecewise-polynomial approximations for functions from H l((o, 1)d), 2l = d, and applications to the spectral theory of the Schrödinger operator,” Israel J. Math. 86, 253-275 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. N. Khuri, A. Martin, and T. T. Wu, “Bound states in n dimensions (especially n = 1 and n = 2),” Few Body Systems 31, 83-89 (2002).

    Article  Google Scholar 

  19. M. S. Birman and A. Laptev, “The negative discrete spectrum of a two-dimensional Schrödinger operator,” Commun. Pure Appl. Math. 49, No. 9, 967–997 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Hundertmark, E. H. Lieb, and L. E. Thomas, “A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator,” Adv. Theor. Phys. 4, 719–731 (1998).

    MathSciNet  Google Scholar 

  21. D. Hundertmark and B. Simon, “Lieb–Thirring inequalities for Jacobi matrices,” J. Approx. Theory 118, 106–130 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Feller, Probability Theory and Its Applications, II, John Wiley and Sons, Inc., New York etc. (1971).

    Google Scholar 

  23. B. Vainberg, “On short-wave asymptotic behavior of solutions of steady-state problems and the asymptotic behavior as t → ∞ of solutions of time-dependent problems,” Russian Math. Surveys 30, No. 2, 1–58 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Molchanov and B. Vainberg, “On negative eigenvalues of low-dimensional Schrödinger operators,” arXiv:1105.0937

  25. M. S. Birman and M. Solomyak, Quantitative Analysis in Sobolev Imbedding Theorems and Applications to Spectral Theory [in Russian], Tenth Math. School, Izd. Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev (1974); English transl.: Am. Math. Soc. Transl. (2) 114, Am. Math. Soc., Providence, RI (1980).

  26. M. S. Birman and M. Solomyak, “Schrödinger operator. estimates for number of bound states as function-theoretical problem” [in Russian], In: Spectral Theory of Operators (Novgorod, 1989), pp. 1–54, Novgorod (1989); English transl.: Am. Math. Soc. Transl. Ser. (2) 150, Am. Math. Soc., Providence, RI (1992).

  27. M. Stoichiu, “An estimate for the number of bound states of the Schrödinger operator in two dimensions,” Proc. Am. Math. Soc. 132, No. 4, 1143–1151 (2003).

    Article  Google Scholar 

  28. N. Seto, “Bargmann’s inequalities in spaces of arbitrary dimension,” Publ. Res. Inst. Math. 9, 429–461 (1973/74).

    Article  MathSciNet  Google Scholar 

  29. R. G. Newton, “Bounds on the number of bound states for the Schrödinger equation in one and two dimensions,” J. Operator Theory 10, No. 1, 119–125 (1983).

    MathSciNet  MATH  Google Scholar 

  30. A. Laptev and M. Solomyak, “On the negative spectrum of two-dimensional Schrödinger operators with radial potentials,” arXiv:1108.1002

  31. F. Dyson, “Existence of a phase transition in a one-dimensional Ising ferromagnetic,” Commun. Math. Phys. 12, No. 2, 91–107 (1969).

    Article  MathSciNet  Google Scholar 

  32. S. Molchanov, “Hierarchical random matrices and operators. Application to Anderson model,” In: Proc. of Sixth Lukacs Symposim, pp. 179–194, VSP (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vainberg.

Additional information

Translated from Problems in Mathematical Analysis 65, May, 2012, pp. 77-118.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molchanov, S., Vainberg, B. Bargmann type estimates of the counting function for general Schrödinger operators. J Math Sci 184, 457–508 (2012). https://doi.org/10.1007/s10958-012-0877-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0877-1

Keywords

Navigation