Skip to main content
Log in

A continuous theory of traffic congestion and Wardrop equilibria

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In the classical Monge-Kantorovich problem, the transportation cost only depends on the amount of mass sent from sources to destinations and not on the paths followed by each particle forming this mass. Thus, it does not allow for congestion effects, which depend instead on the proportion of mass passing through a same point or following a same path, Usually, the traveling cost (or time) of a path depends on “how crowded” this path is. Starting from a simple network model, we will define equilibria in the presence of congestion. We will then extend this theory to the continuous setting mainly following the recent papers by Brasco, Carlier, and Santambrogio and Carlier, Jimenez, and Santambrogio. After an introduction with almost no mathematical details, we will give a survey of the main features of this theory, Bibliography: 22 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Beckmann, “A continuous model of transportation,” Econometrica, 20, 643-660 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Beckmann, C. McGuire, and C. Winsten, Studies in Economics of Transportation, Yale Univ. Press, New Haven (1956).

    Google Scholar 

  3. J.-B. Baillon and G. Carlier, “From discrete to continuous Wardrop equilibria,” in preparation.

  4. J.-B. Baillon and R. Cominetti, “Markovian traffic equilibrium,” Math. Program., 111, 33-56 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Benmansour, G. Carlier, G. Peyré, and F. Santambrogio, “Numerical approximation of continuous traffic congestion equilibria,” Netw. Heterog. Media, 4, No. 3, 605-623 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Benmansour, G. Carlier, G. Peyré, and F. Santambrogio, “Derivatives with respect to metrics and applications: subgradient marching algorithm,” to appear in Numer. Math.

  7. M. Bernot, V. Caselles, and J.-M. Morel, “Optimal Transportation Networks, Models and Theory, Lect. Notes Math., 1955, Springer, Berlin (2009).

    MATH  Google Scholar 

  8. L. Brasco, G. Carlier, and F. Santambrogio, “Congested traffic dynamics, weak flows and very degenerate elliptic equations,” J. Math. Pures Appl., 93, No. 2, 163-182 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Brenier, “The least action principle and the related concept of generalized flows for incompressible perfect fluids,” J. Amer. Math. Soc., 2, 225-255 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Carlier, C. Jimenez, and F. Santambrogio, “Optimal transportation with traffic congestion and Wardrop equilibria,” SIAM J. Control Optim., 47, 1330-1350 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Dacorogna and J. Moser, “On a partial differential equation involving the Jacobian determinant,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, 1-26 (1990).

    MathSciNet  MATH  Google Scholar 

  12. L. De Pascale and A. Pratelli, “Regularity properties for Monge transport density and for solutions of some shape optimization problem,” Calc. Var. Partial Differential Equations, 14, No. 3, 249-274 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. J. DiPerna and P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces,” Invent. Math., 98, 511-547 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  14. J.-M. Lasry and P.-L. Lions, “Mean-field games,” Japan. J. Math., 2, 229-260 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Moser, “On the volume elements on a manifold,” Trans. Amer. Math. Soc., 120, 286-294 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Roughgarden, Selfish Routing and the Price of Anarchy, MIT Press (2005).

  17. E. Rouy and A. Tourin, “A viscosity solution approach to shape from shading,” SIAM J. Numer. Anal., 29, 867-884 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Santambrogio, “Absolute continuity and summability of transport densities: simpler proofs and new estimates,” Calc. Var. Partial Differential Equations, 36, 343-354 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Santambrogio and V. Vespri, “Continuity in two dimensions for a very degenerate elliptic equation,” Nonlinear Anal., 73, No. 12, 3832-3841 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Villani, Topics in Optimal Transportation, Amer. Math. Soc., Providence, Rhode Island (2004).

    Google Scholar 

  21. C. Villani, Optimal Transport, Old and New, Springer-Verlag, Berlin (2009).

    Book  MATH  Google Scholar 

  22. J. G. Wardrop, “Some theoretical aspects of road traffic research,” Proc. Inst. Civ. Eng., 2, 325-378 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Carlier.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 390, 2011, pp. 69-91.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlier, G., Santambrogio, F. A continuous theory of traffic congestion and Wardrop equilibria. J Math Sci 181, 792–804 (2012). https://doi.org/10.1007/s10958-012-0715-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0715-5

Keywords

Navigation