Skip to main content
Log in

Spectral gaps in the dirichlet and neumann problems on the plane perforated by a doubleperiodic family of circular holes

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We show that the spectrum of the Dirichlet and Neumann problems for the Laplace operator in the plane perforated by a double–periodic family of circular holes contains gaps (even any a priori given number of gaps) of certain radii of holes. The result is obtained by asymptotic analysis of the cell spectral problem, interpreted as a problem in a domain with thin bridges. Some open questions are stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. McIver, “Water-wave propagation through an infinite array of cylindrical structures,” J. Fluid Mech. 424, 101–125 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. N. W. Ashcroft, N. D. Mermin, Solid State Phyiscs, Sounders College, Philadelphia (1976).

    Google Scholar 

  3. V. G. Maz’ya, S. A. Nazarov, and B. A. Plamenevskij, “Asymptotics of the solution of the Dirichlet problem in domains with a thin crosspiece” [in Russian], Funkts. Anal. Prilozh. 16, No. 2, 39–46 (1982): English transl.: Funct. Anal. Appl. 16, 108-114 (1982).

    Article  MATH  Google Scholar 

  4. V. G. Maz’ya, S. A. Nazarov, and B. A. Plamenevskij, “Dirichlet problem in domains with thin bridges” [in Russian], Sib. Mat. Zh. 25, No. 2, 161–179 (1984); English transl.: Sib. Math. J. 25, 297-313 (1984).

    Article  MATH  Google Scholar 

  5. S. A. Nasarov and O. P. Polyakova, “Asymptotic expansion of eigenvalues of the Neumann problem in a domain with a thin bridge” [in Russian], Sib. Mat. Zh. 33, No. 4, 80–96 (1992); English transl.: Sib. Math. J. 33, No. 4, 618–633 (1992).

    Article  Google Scholar 

  6. W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gest¨orten Gebieten. 1 and 2, Akademie-Verlag, Berlin (1991); English transl.: V. Maz’ya, S. Nazarov, and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vols. 1, 2, Birkhäuser, Basel (2000).

  7. I. M. Gelfand, “Decomposition into eigenfunctions of an equation with periodic coefficients” [in Russian], Dokl. AN SSSR 73, 1117–1120 (1950).

    Google Scholar 

  8. P. A. Kuchment, “Floquet theory for partial differential equations,” [in Russian], Usp. Mat. Nauk 37, No. 4, 3–52 (1982); English transl.: Russ. Math. Surv. 37, No. 4, 1-60 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Kuchment, Floquet Theory for Partial Differential Equations Birchäuser, Basel (1993).

    Book  MATH  Google Scholar 

  10. M. S. Birman and M. Z. Solomyak, Spectral Theory and Self-Adjoint Operators in Hilbert Space [in Russian], Leningr. Univ. Press, Leningrad (1980); English transl.: Reidel, Dordrecht (1987).

  11. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin etc. (1966).

    MATH  Google Scholar 

  12. A. Figotin and P. Kuchment, “Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model,” SIAM J. Appl. Math. 56, 68–88 (1996); “II. Two-dimensional photonic crystals,” ibid. 56, 1561–1620 (1996).

    Google Scholar 

  13. R. Hempel, K. Lineau, “Spectral properties of the periodic media in large coupling limit,” Commun. Partial Differ. Equations 25, 1445–1470 (2000).

    Article  MATH  Google Scholar 

  14. V. V. Zhikov, “On gaps in the spectrum of some elliptic operators in divergent form with periodic coefficients” [in Russian], Algebra Anal. 16, No. 5, 34–58 (2004); English transl.: St. Petersbg. Math. J. 16, No. 5, 773-790 (2005).

  15. S. A. Nazarov, “Gap in the essential spectrum of an elliptic formally self-adjoint system of differential equations” [in Russian], Differ. Uravn. 46, No. 5, 726–736 (2010); English transl.: Differ. Equ. 46, No. 5, 730-741 (2010).

  16. K. Joshitomi, “Band gap in the spectrum of periodically curved quantum waveguides,” J. Differ. Equations 142, No. 1, 123–166 (1998).

    Article  Google Scholar 

  17. L. Friedlander, M. Solomyak, “On the spectrum of narrow periodic waveguides,” Russian J. Math. Phys. 15, No. 2, 238–242 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. A. Nazarov, “Opening of a gap in the continuous spectrum of a periodically perturbed waveguide [in Russian], Mat. Zametki 87, No. 5, 764–786 (2010); English transl.: Math. Notes 87, No. 5-6, 738–756 (2010).

  19. G. Cardone, S. A. Nazarov, and C. Perugia, “A gap in the essential spectrum of a cylindrical waveguide with a periodic perturbation of the surface,” Math. Nachr. 283, No. 9, 1222–1244 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. A. Nazarov, “A gap in the essential spectrum of the Neumann problem for an elliptic system in a periodic domain” [in Russian], Funkt. Anal. Pril. 43, No. 3, 92–95 (2009); English transl.: Funct. Anal. Appl. 43, No. 3, 239–241 (2009).

  21. S. A. Nazarov, “An example of multiple gaps in the spectrum of a periodic waveguide” [in Russian], Mat. Sb. 201, No. 4, 99–124 (2010); English transl.: Sb. Math. 201, No. 4, 569-594 (2010).

  22. S. A. Nazarov, “Formation of gaps in the spectrum of the problem of waves on the surface of a periodic channel” [in Russian], Zh. Vychisl. Mat. Mat. Fiz. 50, No. 6, 1092–1108 (2010); English transl.: Comput. Math. Math. Phys. 50, No. 6, 1038-1054 (2010).

  23. S. A. Nazarov, K. Ruotsalainen, and J. Taskinen, “Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps,” Appl. Anal. 89, No. 1, 109–124 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. A. Nazarov and J. Taskinen, “On the spectrum of the Steklov problem in a domain with a peak” [in Russian], (English. Russian original) from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. No. 1, 56–65 (2008); English transl.: Vestn. St. Petersbg. Univ., Math. 41, No. 1, 45-52 (2008).

  25. S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. 1,” Commun. Pure Appl. Math. 12, No. 4, 623-727 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. G. Maz’ya and B. A. Plamenevskij, “On the asymptotic behavior of solutions of differential equations in Hilbert space” [in Russian], Izv. Akad. Nauk SSSR, Ser. Mat. 36, No. 5, 1080–1113 (1972); Letter to Edtior, ibid 37, No. 3. 709–710 (1973)). English transl.: Math. USSR, Izv. 6, 1067-1116 (1972).

  27. V. G. Maz’ya and B. A. Plamenevskij, “On the asymptotics of the solution of the Dirichlet problem near the isolated singularity of a boundary” [in Russian], Vestn. Leningr. Univ. Ser. 1 No. 13, 60–66 (1977).

  28. V. G. Maz’ya and B. A. Plamenevskij, “Estimates in L p and in H¨older classes and the Miranda–Agmon principle for solutios of elliptic boundary value problems in domains with singular points on the boundary” [in Russian] Math. Nachr. 81, 25–82 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  29. I. V. Kamotski and V. G. Maz’ya, “On the third boundary value problem in domains with cusps” [in Russian] Probl. Mat. Anal. 54, 145–163 (2011); English transl.: J. Math. Sci., New York 173, No. 5, 609–631 (2011).

  30. V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Am. Math. Soc., Providence, RI (1997).

  31. S. A. Nazarov and J. Taskinen, “Radiation conditions at the top of a rotational cusp in the theory of water-waves,” Math. Modelling Numer. Anal. 45, 947–979 (2011).

    Article  MathSciNet  Google Scholar 

  32. S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates [in Russian], Nauchanaya Kniga (IDMI), Novosibirsk (2002).

  33. S. A. Nazarov and O. R. Polyakova, “The asymptotic form of the stress-strain state near a spatial singularity of the boundary of the “beak tip” type” [in Russian], Prikl. Mat. Mekh. 57, No. 5, 127-142 (1993); English transl.: J. Appl. Math. Mech. 57, No. 5, 887-902 (1993).

  34. S. A. Nazarov, “The spectrum of the elasticity problem for a spiked body” [in Russian], Sib. Mat. Zh. 49, No 5, 1105–1127 (2008); English transl.: Sib. Math. J. 49, No 5, 874–893 (2008).

  35. F. L. Bakharev and S. A. Nazarov, “On the structure of the spectrum for the elasticity problem in a body with a supersharp spike” [in Russian], Sib. Mat. Zh. 50, No 4, 746–756 (2009); English transl.: Sib. Math. J. 50, No 4, 587–595 (2009).

  36. M. Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA (1975).

    Google Scholar 

  37. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems [in Russian], Nauka, Moscow (1989); English transl.: Am. Math. Soc., Providence, RI (1992).

  38. J. L. Lions and E. Magenes Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin (1972).

  39. M. I. Vishik and L. A. Lusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter” [in Russian], Usp. Mat. Nauk 12, No. 5, 3–122 (1957).

    MATH  Google Scholar 

  40. S. A. Nazarov and Yu. A. Romashev, “Change of the intensity factor in case of fracture of the cross connection between two collinear cracks” [in Russian], Izv. Akad. Nauk Arm. SSR, Mekh. 35, No. 4, 30–40 (1982).

  41. S. A. Nazarov, “Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions,” [in Russian], Tr. St. Peterbg. Mat. Obshch. 5, 112–183 (1996); English transl.: Transl., Ser. 2, Am. Math. Soc. 193, 77–125 (1999).

  42. I. V. Kamotskii and S. A. Nazarov, “Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators” [in Russian], Tr. S.-Peterb. . Mat. Ob-va 6, 151–212 (1998); English transl.: Transl. Amer. Math. Soc. Ser. 2, 199, Am. Math. Soc., Providence, RI, 127–182 (2000).

  43. S. A. Nazarov and J. Sokolowski, “Spectral problems in shape optimization. Singular boundary perturbations,” Asymptotic Anal. 56, No. 3-4, 159–204 (2008).

    MathSciNet  MATH  Google Scholar 

  44. F. L. Bakharev, S. A. Nazarov, and K. Ruotsalainen, “A gap in the spectrum of the Neumann-Laplacian in a periodic waveguide,” Appl. Anal. [submitted]

  45. S. A. Nazarov, “Dirichlet problem in an angular domain with rapidly oscillating boundary: Modeling of the problem and asymptotics of the solution” [in Russian], Algebra Anal. 19, No. 2, 183–225 (2007); English transl.: St. Petersbg. Math. J. 19, No. 2, 297–326 (2008).

  46. S. A. Nazarov, “The Neumann problem in angle domains with periodic and parabolic perturbations of boundary” [in Russian], Tr. Moskov. Mat. O-va 69, 183–243 (2007).

    Google Scholar 

  47. S. A. Nazarov, “On the essential spectrum of boundary value problems for systems of differential equations in a bounded domain with a cusp” [in Russian], Funct. Anal. Pril. 43, No. 1, 55–67 (2009); English transl.: Funct. Anal. Appl. 43, No. 1, 44-54 (2009).

  48. D. S. Jones, “The eigenvalues of 2u + λu = 0 when the boundary conditions are given on semi-infinite domains,” Proc. Camb. Phil. Soc. 49, 668–684 (1953).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Translated from Problems in Mathematical Analysis 62, December 2011, pp. 51–100

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A., Ruotsalainen, K. & Taskinen, J. Spectral gaps in the dirichlet and neumann problems on the plane perforated by a doubleperiodic family of circular holes. J Math Sci 181, 164–222 (2012). https://doi.org/10.1007/s10958-012-0681-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0681-y

Keywords

Navigation