Skip to main content
Log in

Singular systems on the plane and in space

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The author studies singular systems, i.e., vector fields with a continuum of singular points, examines the bifurcation of a slow-fast separatrix loop, and establishes a criterion for the realizability of the slow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Anosova, “On invariant manifolds in singularly perturbed systems,” J. Dynam. Control Syst., 5, No. 4, 501–507 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  2. O. D. Anosova, “Invariant manifolds in singularly perturbed systems,” Tr. Mat. Inst. Steklova, 236, Differential Equations and Dynamical Systems. A Collection of Articles Dedicated to the 80th Birthday of E. F. Mishchenko, 27–32.

  3. V. I. Arnold, V. S. Afraimovich, Yu. S. Ilyashenko, and L. P. Shil’nikov, “Theory of bifurcations,” Itogi Nauki Tekh. Dinam. Sist., 5, 5–218 (1986).

    MathSciNet  Google Scholar 

  4. N. Fenichel, “Geometric singular perturbation theory for ordinary differential equation,” J. Differ. Equ., 31, 53–98 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Guckenheimer and Yu. Ilyashenko, “The Duck and the Devil: Canards on the staircase,” Moscow Math. J., 1, No. 1, 27–47 (2001).

    MathSciNet  MATH  Google Scholar 

  6. J. Habbard, “Parametrizing unstable and very unstable manifolds,” Moscow Math. J., 5, No. 1, 105–124 (2005).

    Google Scholar 

  7. M. Krupa and P. Szmolyan, “Extending geometric singular perturbation theory to nonhyperbolic points — fold and canard points in two dimensions,” SIAM J. Math. Anal., 33, No. 2, 286–314 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. F. Mishchenko and N. Kh. Rozov, Differential Equations with a Small Parameter and Relaxation Vibrations [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  9. E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, and N. Kh. Rozov, Periodic Motions and Bifurcation Processes in Singularly Perturbed Systems [in Russian], Fizmatlit, Moscow (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Kaleda.

Additional information

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 28, Part II, pp. 204–228, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaleda, P.I. Singular systems on the plane and in space. J Math Sci 179, 475–490 (2011). https://doi.org/10.1007/s10958-011-0605-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0605-2

Keywords

Navigation